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Abstract

Patterns are ubiquitous in nature and can arise in reaction-diffusion systems with differential
diffusions. The existence and stability of (in)homogeneous steady state are the classical topics in
the dynamics of reaction-diffusion systems. In this thesis we study the influences of anomalous
diffusion and advection upon the patterns.

In the first part of this thesis we consider the impact of subdiffusive process on the instability
of homogeneous states in three types of reaction-subdiffusion systems. The modelling of linear
and nonlinear reaction-subdiffusion processes is more subtle than normal diffusion and causes
different phenomena. The resulting equations feature a spatial Laplacian with a temporal memory
term through a time-fractional derivative. It is known that the precise form depends on the
interaction of dispersal and reaction, and leads to qualitative differences. We refine these
results by defining generalised spectra through dispersion relations, which allows us to examine
the onset of instability and in particular inspect Turing-type instabilities. These results are
numerically illustrated. Moreover, we prove expansions that imply for one class of reaction-
subdiffusion equations algebraic decay for stable spectrum, whereas for another class this is
exponential. We also study the linearisation of a nonlinear reaction subdiffusion equation in a
nonzero homogeneous state. Here the spectrum cannot be analysed directly by Fourier-Laplace
transform, so we provide an energy estimate, existence, uniqueness and dynamics of Fourier
modes of such a linearisation.

It is well known that for reaction-diffusion systems with differential isotropic diffusions, a
Turing instability yields striped solutions. In the second part of this thesis we study the impact
of weak anisotropy by directional advection on the stability of such solutions, and the role of
quadratic nonlinearities. We focus on the generic form of planar reaction-diffusion systems
with two components near such a bifurcation. Using Lyapunov-Schmidt reduction, Floquet-
Bloch decomposition and centre manifold reduction we derive rigorous parameter expansions
for existence, stability against large-wavelength and lattice modes, respectively. This provides
detailed formulae for the loci of bifurcations and stability boundaries under the influences
of the advection and quadratic terms. In particular, while destabilisation of the background
state is through modes perpendicular to the advection (Squire-theorem), we show that stripes
can bifurcate zigzag unstably. The well known destabilising effect of quadratic terms can be
counterbalanced by advection, which leads to intriguing arrangements of stability boundaries.
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We illustrate these results numerically by an example. Finally, we show numerical computations
of these stability boundaries in the extended Klausmeier model for vegetation patterns and show
stripes bifurcate stably in the presence of advection.



Zusammenfassung

Muster sind in der Natur allgegenwärtig und können in Reaktionsdiffusionssystemen mit Differen-
tialdiffusionen auftreten. Die Existenz und Stabilität eines (in) homogenen stationären Zustands
sind die klassischen Themen in der Dynamik von Reaktionsdiffusionssystemen. In dieser Arbeit
untersuchen wir die Einflüsse von anomaler Diffusion und Advektion auf die Muster.

Im ersten Teil dieser Arbeit untersuchen wir den Einfluss von Subdiffusionsprozessen auf
die Instabilität homogener Zustände in drei Arten von Reaktions-Subdiffusionssystemen. Die
Modellierung linearer und nichtlinearer Reaktions-Subdiffusionsprozesse ist subtiler als die nor-
male Diffusion und verursacht unterschiedliche Phänomene. Die resultierenden Gleichungen
enthalten einen räumlichen Laplace-Operator mit einem zeitlichen Gedächtnisterm durch eine
zeitfraktionale Ableitung. Es ist bekannt, dass die genaue Form vom Zusammenspiel von Dif-
fusion und Reaktion abhängt und zu qualitativen Unterschieden führt. Wir verfeinern diese
Ergebnisse, indem wir verallgemeinerte Spektren durch Dispersionsbeziehungen definieren, die
es uns ermöglichen, den Beginn der Instabilität zu untersuchen und insbesondere Instabilitäten
vom Turing-Typ zu untersuchen. Diese Ergebnisse sind numerisch dargestellt. Darüber hin-
aus beweisen wir Erweiterungen, die für eine Klasse von Reaktions-Subdiffusions-Gleichungen
einen algebraischen Abfall für ein stabiles Spektrum implizieren, während dies für eine an-
dere Klasse exponentiell ist. Wir untersuchen auch die Linearisierung einer nichtlinearen
Reaktions-Subdiffusionsgleichung im homogenen Zustand ungleich Null. Hier kann das Spek-
trum nicht direkt durch Fourier-Laplace-Transformation analysiert werden, daher geben wir eine
Energieeinschätzung, Existenz, Eindeutigkeit und Dynamik von Fourier-Moden einer solchen
Linearisierung an.

Es ist bekannt, dass bei Reaktionsdiffusionssystemen mit differentiellen isotropen Diffu-
sionen eine Turing-Instabilität zu gestreiften Lösungen führt. Im zweiten Teil dieser Arbeit
untersuchen wir den Einfluss schwacher Anisotropie durch gerichtete Advektion auf die Sta-
bilität solcher Lösungen und die Rolle quadratischer Nichtlinearitäten. Wir konzentrieren uns
auf die generische Form von planaren Reaktionsdiffusionssystemen mit zwei Komponenten in
der Nähe einer solchen Verzweigung. Durch Lyapunov-Schmidt-Reduktion, Floquet-Bloch-
Zerlegung und Zentrumsmannigfaltigkeitsreduktion leiten wir rigorose Parameterentwicklung
für Existenz, Stabilität gegen grosse Wellenlängen- bzw. Gittermoden ab. Dies liefert de-
taillierte Formeln für die Orte der Bifurkationen und Stabilitätsgrenzen unter dem Einfluss der
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Advektion und der quadratischen Terme. Während die Destabilisierung des Hintergrundzustands
durch Moden erfolgt, die senkrecht zur Advektion verlaufen (Squire-Theorem), zeigen wir ins-
besondere, dass Streifen instabil bezüglich Zick-Zack-Moden verzweigen können. Der bekannte
destabilisierende Effekt quadratischer Terme kann durch Advektion ausgeglichen werden, was zu
vielfältigen Anordnungen von Stabilitätsgrenzen führt. Wir veranschaulichen diese Ergebnisse
numerisch an einem Beispiel. Schliesslich zeigen wir numerische Berechnungen dieser Stabil-
itätsgrenzen im erweiterten Klausmeier-Modell für Vegetationsmuster und zeigen Streifen, die
in Gegenwart von Advektion stabil entstehen.



Contents

Acknowledgements i

Abstract iii

Zusammenfassung v

List of Figures xi

1 Introduction 1
1.1 Pattern formation and reaction-diffusion systems . . . . . . . . . . . . . . . . . 1
1.2 Anomalous diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Reactions with subdiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Reaction-diffusion with advection . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Reaction-subdiffusion systems 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Subdiffusion and reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Fractional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Subdiffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Turing instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Subdiffusion with source and sink . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Scalar case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Convergence to regular spectrum . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Real spectrum and (pseudo-)spectrum for large wavenumber . . . . . . 27
2.4.4 Spectral instability for large wavenumbers . . . . . . . . . . . . . . . . 29
2.4.5 Numerical computations of (pseudo-)spectra . . . . . . . . . . . . . . 32

2.5 Subdiffusion with linear creation and annihilation . . . . . . . . . . . . . . . . 34
2.5.1 Scalar case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



viii Contents

2.5.3 Convergence to regular spectrum . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Numerical computations of spectra . . . . . . . . . . . . . . . . . . . 43

2.6 Subdiffusion with nonlinear creation and annihilation . . . . . . . . . . . . . . 43
2.6.1 Energy estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.3 Dynamics of Fourier modes . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.4 Linear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.5 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Reaction-diffusion-advection systems 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Turing instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Bifurcation of stripes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Large wavelength stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Stability of stripes on lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Centre manifold reduction . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.2 Stability in one space-dimension . . . . . . . . . . . . . . . . . . . . . 73
3.5.3 Stability against (quasi-)square perturbations . . . . . . . . . . . . . . 75
3.5.4 Stability against hexagonal perturbations . . . . . . . . . . . . . . . . 76
3.5.5 Stability against quasi-hexagonal perturbations . . . . . . . . . . . . . 83

3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6.1 Exact example: zigzag-unstable stripes . . . . . . . . . . . . . . . . . 88
3.6.2 Numerical example: extended Klausmeier model . . . . . . . . . . . . 92
3.6.3 Further analysis of extended Klausmeier model . . . . . . . . . . . . . 93

4 Outlook 95
4.1 Further analysis of reaction-subdiffusion equations . . . . . . . . . . . . . . . 95
4.2 Turing-type systems coupled to ODE . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Bifurcation and stability of oblique stripes . . . . . . . . . . . . . . . . . . . . 96
4.4 Subcritically bifurcating stripes . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Prerequisites 99
A.1 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3 Wright function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B Inverse Laplace transform 103
B.1 Inverse Laplace transform with zero branch point . . . . . . . . . . . . . . . . 103
B.2 Inverse Laplace transform with nonzero branch points . . . . . . . . . . . . . . 108



Contents ix

C Some proofs 113
C.1 Proof of Lemma 2.4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.2 Proof of Proposition 2.4.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

D Existence of stripes 119

E Stability of stripes 123
E.1 Spectrum for zigzag instability . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.2 Spectrum for Eckhaus instability . . . . . . . . . . . . . . . . . . . . . . . . . 124
E.3 Stability of 2D and 4D centre manifolds . . . . . . . . . . . . . . . . . . . . . 126
E.4 Stability of 6D centre manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 131

Abbreviations and symbols 137





List of Figures

1.1 Sketch of continuous-time random walks in one-dimensional space . . . . . . . 4

2.1 Comparison of numerically computed regular spectra and pseudo-spectra1 . . . 24
2.2 Numerically computations of (pseudo-)spectra of scalar model1 . . . . . . . . . 25
2.3 Illustrations of the case when the regular spectrum at fixed wavenumber either

differs from or contains the origin . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Existence and stability of large wavenumber (pseudo-)spectrum1 . . . . . . . . 31
2.5 Comparison of numerically computed (pseudo-)spectra beyond the regular Tur-

ing instability1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Comparison of real parts of (pseudo-)spectra beyond the regular Turing instability1 33
2.7 Comparison of (pseudo-)spectra in the principal branch1 . . . . . . . . . . . . 34
2.8 Illustrations of real parts of (pseudo-)spectra, and (pseudo-)spectra in single

value holomorphic branches1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Comparison of real parts of (pseudo-)spectra versus wavenumber1 . . . . . . . 36
2.10 Illustrations of regular spectra in complex plane for a fixed wavenumber . . . . 39
2.11 Illustrations of (in)stability regions of spectra near the origin1 . . . . . . . . . . 43
2.12 Numerical computations of (psudo-)spectra1 . . . . . . . . . . . . . . . . . . . 44
2.13 Numerical computations of real parts of (pseudo-)spectra versus wavenumbers1 44
2.14 Comparison of the logarithm of solutions of ordinary and fractional differential

equations2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Sketches of the leading order existence and stability boundaries near the Turing
bifurcation point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Sketches of the quasi-hexagonal stability regions and the width of the stable
connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Sketches of the quasi-hexagonal stability regions near Turing bifurcation point
and the width of the stable connection . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Illustration of locations of the critical spectrum of homogeneous steady state1 . 63
3.5 Sketches of the different leading order zigzag instability boundaries . . . . . . 70
3.6 Sketches of the quasi-square stability regions of stripes . . . . . . . . . . . . . 77
3.7 Sketches of the hexagonal stability regions of stripes . . . . . . . . . . . . . . 80

xi



xii List of Figures

3.8 Sketches of the hexagonal stability regions near the Turing point . . . . . . . . 81
3.9 Sketch of the hexagonally unstable region . . . . . . . . . . . . . . . . . . . . 83
3.10 Sketches of the quasi-hexagonal stability regions near the Turing point . . . . . 86
3.11 Sketches of the quasi-hexagonal and Eckhaus stability boundaries near the Turing

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.12 The leading order of the rescaled striped solution1 . . . . . . . . . . . . . . . . 90
3.13 Numerical computations of the leading order Eckhaus and zigzag (in)stability

regions of the stripes for a designed example1 . . . . . . . . . . . . . . . . . . 90
3.14 Numerical computations of leading order of instability regions and boundaries

of stripes against lattice modes for a designed example1 . . . . . . . . . . . . . 91
3.15 Numerical computations of the leading order of hex- and quasi-hex-instability

regions for a designed example1 . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.16 Eckhaus and zigzag (in)stability regions of the stripes for extended Klausmeier

model3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.17 Numerical computations of the leading order of Eckhaus and zigzag (in)stability

regions of the stripes for extended Klausmeier model1 . . . . . . . . . . . . . . 94

B.1 Notation and geometry of the integration contours where the branch cut is the
origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2 Notation and geometry of the integration contours where the branch points are
complex with negative real parts . . . . . . . . . . . . . . . . . . . . . . . . . 109

1Computed using Mathematica
2Computed using SageMath
3Computed using pde2path - a Matlab package [63]



Chapter 1

Introduction

1.1 Pattern formation and reaction-diffusion systems

A pattern is a kind of spatially non-uniform structure with some spatial or temporal regularities,
and these are ubiquitous in nature. In the early works, patterns were observed in the convectional
motion. In 1900, Henri Bénard found that, under the influences of the temperature gradient and
gravity, heating a fluid between two horizontal plates causes the fluid to rise and fall which can
form spatial patterns [4]. These patterns are most commonly stripes or convection rolls; more
complicated patterns such as squares or hexagons could also emerge, depending on the specific
physical systems and the fluid properties [26]. In 1916, Lord Rayleigh published a paper [51]
analysing the aforementioned experiment, and thus this kind of pattern-forming process is known
as Rayleigh-Bénard convection. Patterns can be observed in the vibration of liquids as well, e.g.
Faraday waves, named after Michael Faraday. Faraday waves are nonlinear standing waves that
emerge on the surface of a fluid by vibrating the container. This observation was described in
the appendix of the article [13]. Subsequent experiments show that a wide variety of patterns
can appear, such as squares, hexagons, or even exotic patterns such as the one with twelvefold
rotational symmetry [11], depending on the strength of the vibration and the type of fluids.

Patterns can also be observed in systems of reacting and diffusing chemicals, so-called
reaction-diffusion (RD) systems. A famous example is the Belousov-Zhabotinsky reaction [3,73].
During the reaction, the colour of the mixed substances (solution) is periodically changed by
continuous stirring. Without the stirring, one can see the waves propagating and forming
concentric rings or rotating spirals. Patterns are ubiquitous in animal skin markings as well, such
as the stripes on zebras, irregular hexagons on giraffes, etc., and the process of the emergence
is so-called morphogenesis. In 1952, Alan Turing published a famous paper [62] in which he
suggested an explanation of the mechanism of morphogenesis. He predicted that two different
chemical substances, an activator and an inhibitor with differentially diffusive rates, can produce
the patterns, which are so-called Turing patterns. The activator causes growth in the concentration
of substances, whereas the inhibitor causes depletion. The patterns can emerge if the inhibitor

1



2 Chapter 1. Introduction

diffuses much faster than the activator. Turing patterns can appear not only on the skins of
animals, but also happen, for instance, in the formation of vegetation. In semi-/arid terrain, since
the vegetation competes for the limited ground water, the former cannot uniformly cover the
ground and thus patterns appear [28, 37, 59]. In flat terrain, a variety of patterns can emerge,
such as spots, gaps, stripes or labyrinths. In contrast, in sloped terrain, striped patterns are more
likely to happen than other types due to the water flow [2,28, 59].

Reaction-diffusion systems arise naturally in chemical reactions which consist of many
interacting components, and are widely used to describe the pattern-forming processes. A
simple type of RD systems has the following form

∂tu = D∆u + F(u), u(x, t) ∈ RN, x ∈ Rn, t > 0, (1.1)

where u(x, t) is a vector of the densities or the concentrations of the interacting species or
chemicals with the spatial vector x = (x1, . . . , xn) and temporal variable t, D ∈ RN×N is a
diagonal matrix of diffusion coefficients with positive diagonal entries which measures the rate
of the dispersal of each component, ∆ := ∂2

x1 + · · · + ∂
2
xn

is the spatial Laplacian, F : RN → RN

is a nonlinear vector which represents the local reaction kinetics. More specifically, the source
term F in an ecological context, for instance, may represent the birth and death process. Notably,
the maximum principle is valid only for the scalar equation, i.e., N = 1.

As mentioned, the diffusion process plays a key role in Turing pattern formations. Diffusion
is a mechanism by which the substances move from an area of higher concentration to an area
of lower concentration. Diffusion is driven by the gradient in concentration and the substances
gradually become homogeneous in the whole area. The (normal) diffusion process follows the
Fick’s law which suggests that the diffusive flux which goes from areas of higher concentration
to areas of lower concentration is proportional to the concentration gradient. The correspond-
ing proportion is the so-called diffusion coefficient which measures the rate of the dispersal.
However, it has been found that many diffusion processes do not follow Fick’s law, for instance,
charge carrier transport in amorphous semiconductors [55], transport on fractal geometries [21],
collective slip diffusion on solid surfaces [31], transport in turbulent plasma [1], etc. Such a
non-Fickian diffusion process is called anomalous diffusion. Anomalous diffusion can be clas-
sified into two cases, subdiffusion and superdiffusion. Subdiffusion is, roughly speaking, a kind
of diffusion process that is ‘slower’ than normal diffusion, whereas superdiffusion is ‘faster’ than
normal diffusion.

Pattern formation in RD systems, in particular the Turing patterns, has been widely considered
in the past seven decades. However, the study of the dynamics of the anomalous diffusion-reaction
systems were just started in the past few decades [16, 18, 22, 25, 29, 42, 43, 45, 46, 66, 68]. In
particular, there are only few works that concern the Turing patterns in reaction-subdiffusion
systems.

An important aspect of nonlinear dynamics and pattern formation in RD systems is pattern
selection. It is well known that, for instance, in flat terrain there is no pattern selection, so that
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spots (vegetation surrounded by bare soil), gaps (bare soil surrounded by vegetation) and stripes
(banded vegetation) coexist. In sloped terrain, however, the isotropy is broken and thus stripes
are formed predominantly. The direction of the vegetation stripes extends parallel to the contour
of the hill. Moreover, some evidence shows that the vegetation stripes slowly ‘climb up’ the hill,
e.g. [9]. The explanation of this phenomena is as follows [28]: The water does not infiltrate in
the bare soil between the vegetation stripes, then flows downhill to the next stripe where it can
be absorbed by the plants and help these grow. Due to the absorption of water, the downhill side
of the stripe lacks water, which causes the next bare area. The stripe slowly moves uphill since
the uphill side of the stripe has moister soil which can grow the plants, whereas the plants on the
downhill side of the stripe die as a result of insufficient water.

In this thesis, we study two aspects of the dynamics of RD systems (equations). On the one
hand, we study the influence of anomalous diffusion, in particular the subdiffusion processes on
the reactions of the substances. On the other hand, we study the impact of the slope (advection)
on pattern-forming processes in RD systems.

1.2 Anomalous diffusion

In the normal diffusion process, the individual particles follow the Brownian motion which is
a Markovian process such that the future states depend only upon the present state and not on
the past states. This memoryless process follows the linear scaling law ⟨x2(t)⟩ ∼ t, where the
mean squared displacement (MSD), denoted by ⟨x2(t)⟩, measures the average deviation of an
individual particle with respect to the initial point during a given time. The diffusion process
can be described by the diffusion equation

∂tu = d∆u, u(x, t) ∈ R, x ∈ Rn, t > 0, (1.2)

where u(x, t) is the density or the concentration of the substances with the spatial vector x and the
temporal variable t; the diffusion coefficient d measures the rate of the dispersal. It is well known
that Green’s function of (1.2) is given by u(x, t) = (4πdt)−n/2 exp(−|x|2/(4dt)). The MSD is
then given by ⟨x2(t)⟩ =

∫
Rn

|x|2udx = 2ndt which is linear in time.

Anomalous diffusion, however, arises from a transport process with a nonlinear temporal
MSD of particles. Specifically, we say that a transport process exhibits anomalous diffusion if
the MSD scales as a nonlinear power-law in time ⟨x2(t)⟩ ∼ tγ, with anomalous exponent γ , 1.
Such an anomalous diffusion process is called subdiffusion if 0 < γ < 1, and superdiffusion if
γ > 1, cf. [35,38]. In addition to power-law scaling, there are a variety of other scalings such as
a logarithmic time dependence which we do not touch upon here.

The (anomalous) diffusion can be described by continuous-time random walks (CTRW),
cf. [35, 38]. The CTRW is a generalisation of the random walk, in which the waiting times until
the next displacements are random variables and the jump lengths can also be regarded as random
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Figure 1.1: Sketch of continuous-time random walks in one-dimensional space. The solid lines represent
the waiting times and the dashed lines represent the jump lengths.

variables. Fig. 1.1 shows a one-dimensional CTRW, i.e., x = x ∈ R: an individual particle stays
at a position for some time, then it immediately jumps to the next position, and repeats such
procedure. The probability for a jump length in the interval (x, x + dx) is given by ϕ(x)dx
where ϕ(x) denotes the probability density function (PDF) of the jump length. Analogously, the
probability for a waiting time in the interval (t, t + dt) is given by w(t)dt where w(t) denotes
the PDF of the waiting time. The types of diffusion processes can be classified by the variance
of the jump length, i.e., Σ2 :=

∫
R

x2ϕ(x)dx, and the expectation of the waiting time, i.e.,
T :=

∫ ∞

0 tw(t)dt, as follows.

• Σ2 < ∞, T < ∞: normal diffusion

• Σ2 = ∞, T < ∞: superdiffusion

• Σ2 < ∞, T = ∞: subdiffusion

In this thesis, we only consider the subdiffusion process and compare it to normal diffusion. We
refer to [18, 35, 38, 39, 45, 66] for more details of superdiffusion.

Comparing subdiffusion with normal diffusion, the variances of the jump lengths are both
finite, but the expectations of the waiting times are qualitatively different. The finite variance and
expectation can be achieved by choosing the exponentially decaying functions ϕ(x) and w(t) in
space and time, respectively, e.g. the Gaussian distribution ϕ(x) = (4πσ2)−1/2 exp(−x2/(4σ2))

with variance Σ2 = 2σ2 and Poissonian distribution w(t) = τ−1 exp(−t/τ) with the expectation
T = τ. Concerning the infinite expectation in subdiffusion, one may expect the non-exponential
waiting time PDF, which gives a non-Markovian process with memory. Specifically, such PDF
has the asymptotic behaviour for large time w(t) ∼ γτγ/(Γ(1 − γ)t1+γ), 0 < γ < 1, t ≫ 1 with
the Gamma function Γ. Hence, the particles have a relatively high probability of remaining
at certain positions for a very long time so that subdiffusion is, roughly speaking, slower than
normal diffusion. The role of the diffusion equation in this context is taken by the subdiffusion
equation, which has the form

∂tu = D
1−γ
0,t d∂2

xu, u(x, t) ∈ R, x ∈ R, t > 0, (1.3)

with time-fractional Riemann-Liouville derivative D
1−γ
0,t , cf. Definition 2.3.2, a non-local convo-

lution operator in time that entails the memory.
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1.3 Reactions with subdiffusion

The modelling of reactions in the presence of subdiffusion is a complex task and leads to different
models, which essentially come in two types. In the so-called diffusion-limited reactions the
non-local operator acts on the diffusion terms as well as the reaction terms, or in other words the
diffusion and reaction terms occur in an additive way but the time evolution is described by the
fractional derivatives [23, 44, 57, 58, 65, 72], e.g.,

∂tu = D
1−γ
0,t [d∂2

xu + f (u)] or D
γ
0,t (u − u0) = ∂

2
xu + f (u). (1.4)

Here the reaction is “slow” even without subdiffusive transport, i.e., d = 0. This type of model
is derived from the CTRW for the recombination kinetics [58] or instantaneous creation and
annihilation processes in subdiffusive media [23].

In the so-called activation-limited reactions the non-local operator acts on the diffusion terms
only, i.e., the reactive process does not depend on the subdiffusive medium [14,23,24,42,44,60].
In this thesis, we focus on this type and study the following three different types of models in
one-dimensional space, i.e. x = x ∈ R.

Subdiffusion with extra source and sink This model is derived by adding extra source or sink
terms to the subdiffusive process [24,25]. The model is described by the following time-fractional
partial differential system

∂tu = DD
1−γ
0,t ∂

2
xu + F(u), u(x, t) ∈ RN, x ∈ R, t > 0. (1.5)

Comparing to (1.1), the Riemann-Liouville derivative acts on the spatial Laplacian and thus
causes memory in time. For the anomalous exponent γ = 1, (1.5) becomes the classical RD
system (1.1). However, it has been shown in [23] that (1.5) with N = 1 and negative linear reaction
dynamics, e.g., F(u) = −u, possesses a Green’s function with negative parts. Heuristically, the
reason for the negative parts is that the sink removes substances which have not yet jumped from
other positions due to the long waiting time PDF. If u represents an absolute density we therefore
obtain a physically unrealistic model, see also [47]. However, in this thesis we are concerned with
u modelling a vector of density perturbations from a saturated strictly positive state, and such
perturbations can be negative. Specifically, the linearisation of (1.5) in a non-zero homogeneous
steady state is a linear system in which F(u) is replaced by a linear vector.

Subdiffusion with linear creation and annihilation In the subdiffusive process, the addition
or removal of particles arises from the reaction during the waiting time with constant rates [23,
30, 47]. The model for multiple species is given by

∂tu = DeAtD1−γ
0,t

(
e−At∂2

xu
)
+ Au, u(x, t) ∈ RN, x ∈ R, t > 0, (1.6)

where A ∈ RN×N is a constant reaction rate matrix and e±At are the matrix exponentials. This
model also coincides with the classical one at γ = 1, and it preserves positivity of solutions since
the amount of removed substances is less than the amount of existing substances.
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Subdiffusion with nonlinear creation and annihilation The addition or removal of particles
arises from the reaction with nonlinear rate r(u) and gives the scalar equation [14, 47]

∂tu = d∂2
x

(
e
∫ t

0 r(u(x,τ))dτD
1−γ
0,t

(
ue−

∫ t

0 r(u(x,τ))dτ
))
+ r(u)u, u(x, t) ∈ R, x ∈ R, t > 0, (1.7)

where r : R → R. One example of such specific reaction term is a Fisher-KPP type reaction
kinetics which is in the form of r(u)u := α(1 − u)u, α > 0. This equation seems like the
generalisation of (1.6) with N = 1. Indeed, the linearisation of (1.7) in a zero solution yields the
form of (1.6). However, the linearisation in a non-zero homogeneous state yields

∂tu = d∂2
x

(
D

1−γ
0,t u − σD

−γ
0,t u + σD1−γ

0,t 1 · D−1
0,tu

)
+ σu, (1.8)

where D
−γ
0,t is the fractional integral operator, cf. Definition 2.3.1. This equation is different

from the aforementioned two types of reaction-subdiffusion models, and even more complicated
due to the product term D

1−γ
0,t 1 · D−1

0,tu. This equation coincides with the classical RD equation
for γ = 1 and reduces to the subdiffusion equation (1.3) for σ = 0.

Due to the non-local term in time, equations with subdiffusion are not dynamical systems
on the phase space of the natural initial condition u(x, 0). In particular, solutions do not form a
cocycle since any restart at some t > 0 requires prescribing an initial condition on the preceding
temporal interval u(x, s), 0 ≤ s ≤ t. One may interpret this as a variable delay, which is
initially zero and extends indefinitely. Indeed, solutions can cross the initial state, and need not
remain positive or satisfy a maximum principle, e.g. [23]. The fractional derivative operator also
depends explicitly on time, so the stability of an equilibrium from a linearisation is not readily
determined by the spectrum of a time-independent linear operator.

Concerning the models (1.5) and (1.6) in both scalar and two-component cases, inspired
by the work of Henry and co-authors [22, 25], we study the linear equations through Fourier-
Laplace transform which leads to dispersion relations of the form D(s, q2) = 0 that relate the
temporal mode through s ∈ C with the spatial mode through q ∈ R. By analogy to evolution
equations with normal diffusion, one might expect that the set of solutions determines the spectral
stability, but the situation for reaction-subdiffusion systems (of the first two types) is more subtle.
Since fractional powers occur in the dispersion relation, one has to choose branch cuts, and the
canonical choice of the negative real line has been used in [22, 25, 42, 44]. As expected, for
some cases it has been shown that positive real parts imply exponential instability. Negative real
parts, however, do not necessarily imply exponential decay. Indeed, it has been found in [25] for
γ = 1/2 that solutions decay as a power law.

In this thesis, we refine and extend the results of the the models (1.5) and (1.6), as informally
summarised next.

Pseudo-spectrum and convergence We consider non-canonical branch cuts and show that the
choice strongly influences the existence of solutions to the dispersion relation that lie to the left
of the (rightmost) branch point, which we therefore refer to as pseudo-spectrum.
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The reason for choosing non-canonical branch cuts is that it allows us to locate and track
otherwise invisible solutions to the dispersion relation. In particular we identify those solutions
that relate to the spectrum of classical RD equations (1.1) for γ = 1, and we prove the convergence
of the spectrum as γ → 1 using Rouché’s theorem (Theorems 2.4.15, 2.5.8).

Decay and growth We show that, at least for rational γ ∈ (0, 1) and N ≤ 2, a strictly stable
(pseudo-)spectrum in (1.5) implies that Fourier modes of solutions decay with an algebraic
power law (Theorem 2.4.5). In contrast, the strictly stable (pseudo-)spectrum in (1.6) with N ≤ 2
implies an exponential decay whose rate, however, may differ from that of RD systems (1.1)
(Theorem 2.5.4); the Fourier modes of both (1.5) and (1.6) grow exponentially for unstable
(pseudo-)spectrum. In fact, we provide a leading order expansion and provide formulae of the
leading order coefficients. We also include a discussion of the scalar subdiffusion equation (1.3),
in particular algebraic decay and positivity, which we found somewhat scattered in the literature,
cf. §2.3.2.

We remark that different algebraic decay for a strictly stable spectrum has been obtained
in [65, Theorem 5.1] for (1.4)(2) with homogeneous Dirichlet boundary condition.

Turing-type instability Concerning the onset of instability, models (1.5) and (1.6) differ
significantly from each other and from the case of a classical RD system (1.1). We focus on the
case of two-component systems, N = 2, and when parameters are such that γ = 1 admits a so-
called Turing instability for a critical diffusion ratio. As already noticed in [22,25,42,44], in case
(1.5), if the spectrum for γ = 1 is Turing unstable, then the spectrum for all γ ∈ (0, 1) is unstable.
This means that, in terms of the diffusion ratio, the reaction-subdiffusion in (1.5) is always less
stable than normal diffusion. In particular, the threshold of Turing instability in (1.5) is smaller
than that for normal diffusion. As noticed in [42,44], considering large wavenumbers shows that
the spectrum becomes unstable via infinite wavenumber with oscillatory modes. In particular,
there is no finite wavenumber selection at the onset of instability, which is a key feature of the
normal Turing instability. Beyond the results in [42, 44], we in particular include an analysis
of (pseudo-)spectrum, which reveals the transition to instability. Specifically, we show that for
any diffusion ratio less than the Turing threshold for normal diffusion, the (pseudo-)spectrum is
strictly stable for all wavenumbers if γ is close to 1 (Theorem 2.4.20).

Stable (pseudo-)spectrum of (1.6) and its transition to instability differs in character from that
of (1.5). Specifically, the (pseudo-)spectrum of (1.6) is not close to the origin for large wavenum-
bers, which is similar to the spectrum of (1.1) and leads to the aforementioned exponential decay.
We prove that stable (pseudo-)spectrum becomes unstable via finite wavenumber for γ close to 1,
and we obtain the Turing instability threshold as a function of the anomalous exponent, and find
a critical minimum anomalous exponent γA depending on A (Theorem 2.5.10). In particular,
and in contrast to (1.5), the subdiffusive transport in (1.6) is always more stable than normal
diffusion, and the Turing instability does not happen for γ < γA.
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Concerning the nonlinear model (1.7), in this thesis we focus on the linearisation in the non-
zero homogeneous steady state (1.8). In contrast to the linear equations of (1.5) and (1.6), the
spectrum of (1.8) is still an open problem. The Laplace transform of the product D1−γ

0,t 1 · D−1
0,tu

yields a complex integral which is dependent on the temporal mode implicitly, and thus the
spectrum is still unknown. We aim to prove the linear stability of the solutions to (1.8), in
particular the stable solutions for σ < 0. Until now, we obtain some indirect results as follows.
We provide an energy estimate which shows that a type of energy of the solution is decaying
locally in time (Theorem 2.6.1). We consider the Fourier modes of (1.8) and prove the existence
and uniqueness of the mild solution (Theorem 2.6.6). We also study the dynamics of the Fourier
modes and prove that the solution is exponentially decaying for short time (Theorem 2.6.7), which
is a typical property of the subdiffusion equation (1.3), but the decaying rates may be different.
Moreover, one possible method to study the linear stability is the comparison principle. We find
two auxiliary systems whose solutions are both algebraically decaying in time with differential
rates, then try to prove that the solutions to (1.8) are bounded by the aforementioned solutions
from auxiliary systems.

These insights may form the basis for further linear analysis, in particular estimates in x-
space, but also nonlinear analysis in terms of estimates and possibly bifurcations. These are rather
non-trivial due to the strongly different character of the linear dynamics and spectral properties
compared to normal diffusion.

1.4 Reaction-diffusion with advection

It is well known that from the ubiquitous spatially isotropic Turing instabilities various patterned
solutions bifurcate. In one dimension the basic spatially periodic ones are wavetrains, which
trivially extend to stripe solutions in two-dimensional space, where they are in competition with
hexagonal and square shaped states, e.g., [26]. The question arises, which pattern is selected at
onset of the instability. It is well known that in the isotropic situation, stripes are unstable with
respect to modes on the hexagonal lattice near onset in the presence of a generic quadratic term
in the nonlinearity. This has been discussed in [19] in the context of vegetation patterns. In
contrast, it has been found in [59] that in a sloped terrain, the banded vegetation patterns, i.e.
the stripes, are stable at onset. Here the slope is modelled by an advective term in the water
component, which breaks the spatial isotropy. Indeed, from a symmetry perspective for weakly
anisotropic perturbations and on the hexagonal lattice this has already been predicted in [6]. The
destabilising effects of advection terms on homogeneous states have been broadly studied in the
context of differential flows, e.g., [8,36,52] and also appear in ecology, e.g., [5,7,67], where we
believe our results can also be useful.

In this thesis, we consider a generic form of the planar reaction-diffusion-advection systems
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with two components, up to cubic nonlinearity

∂tu = D∆u + Lu + α̌Mu + βB∂xu +Q[u, u] + K[u, u, u], (1.9)

with u(x, t) ∈ R2, x = (x, y) ∈ R2, t > 0, ∆ := ∂2
x + ∂

2
y , constant matrices L, M , multilinear

functions Q,K and diagonal diffusion matrix D > 0; higher order nonlinear terms can be added
without change to our results near bifurcation, i.e., in a small neighbourhood of u = 0. We
assume that for α̌ = β = 0 the zero equilibrium is at a Turing instability with wavenumber kc,
cf. Definition 3.2.1 below, and that α̌ moves the spectrum through the origin. The isotropy is
broken for β , 0, and we assume differential advection

B = B(c) =

(
1 + c 0

0 c

)
, c ∈ R,

which can be realised under the natural assumption of unidirectional anisotropy. Note that βc∂x
appears in both equations as a comoving frame in the x-direction, and positive (negative) β
implies the advection of the first component in negative (positive) x-direction.

We study the stability of stripes in (1.1) for weak anisotropy. On the one hand, we consider
the stability against large-wavelength perturbations. We are particularly interested in refining the
results of [59] which indicate a stabilising effect of advection for stripes aligned with this. In
particular, it was proven that the onset of instability of the homogeneous state, i.e., the nature of
the Turing-Hopf instability, is due to one-dimensional modes (a ‘Squire’-theorem). However we
shall explain in §3.4 that this does not necessarily imply stability of bifurcating stripes.

On the other hand, we study the stability of stripes with respect to lattice modes or equivalently
stability on certain rectangular domains with periodic boundary conditions. We show that
advection can have a stabilising effect on the stripes, counteracting in particular the destabilising
effect of quadratic terms. The consideration of periodic domains adapted to suitable wavevectors
is a classical theme in amplitude equations, and is a standard tool in the context of Turing
instabilities, see [26,48,59] and the references therein. However, the analysis of weak anisotropy
seems scarce.

We take a direct approach and first study the existence of stripes with detailed expansions
by Lyapunov-Schmidt reduction. We then analyse the large-wavelength stability via Floquet-
Bloch decomposition in the spirit of [10, 40, 50]. Large wavelength modes, also called sideband
modes, are well understood in one space dimension through the Ginzburg-Landau formalism,
e.g., [10,26,56], most directly from the fourth order Swift-Hohenberg (SH) equation. Here only
sideband modes are relevant and the so-called Eckhaus region describes the stability boundary,
which is crossed when stretching or compressing the wavetrains too much. In two-dimensional
space, instabilities along the stripe that is formed by trivially extending the one-dimensional
wavetrain, become additionally relevant. The large-wavelength modes of this type give rise
to the so-called zigzag stability boundary. It is well known that for the SH equation this is
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crossed when wavetrains are stretched by any amount in the isotropic case, but detailed rigorous
studies for RD systems (even without advection) seem scarce; in [48] a reduction to hexagonal
lattices is applied. Indeed, zigzag stability can also be studied with the aid of a modulation
equation, the so-called Newell-Whitehead-Segal equation, again most directly linked with the
SH equation [26].

We study the stability of stripes on lattices by employing centre manifold reductions on do-
mains that are nearly square and nearly ‘hexagonal’, i.e., with the hexagonal lattice for wavevec-
tors. We expand the critical eigenvalues of the stripes in anisotropic spatial scaling as well as
the system parameters. The advantages of this approach are that it is fully rigorous and that we
gain direct access to all relevant characteristic quantities in terms of the advection, the quadratic
terms, stretching and compressing. A particular motivation is to bridge the discussion of stripe
stability in [59] for a variant of the Klausmeier model, where zigzag modes were not considered
in any detail, with rather large advection to the results from [19] for zero advection.

The approach applies to an arbitrary number of components, but the parameter spaces and
determination of signs of relevant characteristics become analytically less accessible for more
than two components. Hence we restrict our attention to two-component systems.

Our main results may be summarised as follows.

Existence of stripes We prove the existence of striped solutions to (1.1) with small amplitude
near the onset of Turing instability (Theorem 3.3.1). Specifically, the stripes are in one-to-
one correspondence with the solutions to an algebraic equation, which characterises a family of
supercritical pitchfork bifurcations. Solving the leading order of such an algebraic equation gives
the bifurcation loci which form a family of hyperbolic paraboloids. We provide an expansion
of striped solutions in the parameters and the velocity parameter c. In the context of activator-
inhibitor systems, in case the first component is an inhibitor the direction of the stripe motion
is with β, and it is opposite β if the first component is an activator. This verifies the uphill
movement of the banded vegetation patterns.

Having established the existence of stripes, we obtain the following results concerning the
stabilities of stripes against large-wavelength and lattice modes. In particular, the in/stability of
stripes against the large-wavelength modes parallel and perpendicular to the stripes, is referred
to as zigzag and Eckhaus in/stability, respectively. Our results on these types of instability at the
onset of Turing bifurcation may be summarised as follows.

Zigzag instability We determine the leading order curvature of the spectrum for modes parallel
to the stripes (Theorem 3.4.1). The leading order zigzag boundary is independent of α̌ if M = Id
and Q = 0, as in the isotropic case of SH equation [26]. While in the presence of the generic
M,Q, we highlight their impacts on the shape of the zigzag boundary. Moreover, the advection
β has either a stabilising or destabilising effect. As a result, the different combinations of the
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advection β, constant matrix M and quadratic nonlinearity Q allow for moving and tilting the
zigzag boundary, which leads to various arrangements of stability boundaries. In particular,
it is possible that stripes are zigzag unstable at the onset of Turing instability, which shows
a limitation of the ‘Squire theorem’ of [59], i.e., the fact that a homogeneous steady state is
always destabilised by modes that are constant in the direction perpendicular to the advection.
Specifically, the destabilisation of homogeneous state via transverse modes is naturally inherited
by the stripes and thus they are zigzag-unstable, whereas the stabilisation of homogeneous state
are not necessarily inherited by the stripes, i.e., the zigzag-unstable stripes may still bifurcate
(Remark 3.2.7).

Eckhaus instability We determine the leading order curvature of the spectrum for modes
perpendicular to the stripes (Theorem 3.4.4). As with the well-known Eckhaus boundary in the
isotropic case [26], the stripes are always Eckhaus-unstable near the onset of Turing instability
in the anisotropic case as well, except for the stripes with critical Turing wavenumber, i.e. κ̃ = 0.
In the anisotropic case, the larger advection strength produces a larger Eckhaus-stable region
for fixed unfolding parameter α̌, i.e., the stripes are more resilient to stretching/compressing
compared to the isotropic case. Nevertheless, in contrast to the zigzag instability, relative to the
bifurcation loci there is no leading order impact of the advection on this Eckhaus instability.

We aim to determine the full in/stability of stripes against L2-perturbations. In terms of the
zigzag and Eckhaus instability, for sufficiently small and non-zero advection, the stripes are always
stable against L2-perturbations if they are both zigzag and Eckhaus stable (Corollary 3.2.6).

Stability against lattice modes Here we are concerned with finite wavenumber in/stability. In
fact, it is shown in Corollary 3.2.6 that in the anisotropic case stripes are spectrally stable near the
onset of Turing instability, which is reflected in the results of lattice modes as well. It is natural
to consider domains whose Fourier wavevectors form periodic lattices and where the symmetric
lattices are square (rotation by π/2) and hexagonal (rotation by π/3). We refer to the lattice
modes considered on the (nearly) square and (nearly) ‘hexagonal’ domains as the (quasi-)square
and (quasi-)hexagonal modes, respectively. It turns out that certain quasi-hexagonal modes are
more unstable than others, and therefore the dominant stability boundaries are determined by
such quasi-hexagonal modes.

We highlight that the advection competes with the quadratic nonlinearity, i.e., the advection
has a stabilising effect on the stripes whereas the quadratic nonlinearity has a destabilising
effect. Specifically, in the isotropic case and for the generic quadratic form, the stripes are always
unstable against quasi-hexagonal modes near the onset, whereas in the anisotropic case the stripes
are stable near the Turing bifurcation point. In particular, the Eckhaus instability mechanism is
always dominant near the Turing bifurcation point in anisotropic case, which is consistent with
Corollary 3.2.6.
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1.5 Outline

This thesis is organised as follows.

In Chapter 2, we consider three types of reaction-subdiffusion models mentioned in §1.3
and study the stabilities of their homogeneous steady states. Specifically, concerning the first
two types, we study the Turing instabilities by approximating the (pseudo-)spectrum, prove the
convergence using Rouché’s theorem and prove the decays/growths using the inverse Laplace
transform (ILT). Concerning the third type, we provide the energy estimate, dynamics of Fourier
modes and prove the existence and uniqueness of Fourier modes. We illustrate these results by a
number of numerical computations.

In Chapter 3, we consider the reaction-diffusion-advection system (1.1). We prove the
existence of the striped solutions using the Lyapunov-Schmidt reduction. We study the stabilities
of stripes against large-wavelength modes using the Floquet-Bloch decomposition and expanding
the eigenvalue problem. We also analyse the stability of stripes against lattice modes and
employ centre manifold reduction to derive a rigorous parameter expansion for the critical
eigenvalues. We illustrate these results numerically using a concrete example and show numerical
computations of the stabilities in the extended Klausmeier model for vegetation patterns.

In the Appendices, we provide the background on Fourier and Laplace transforms as well as
the Wright function which is commonly used in subdiffusion equations. Then we provide some
proofs of the main results in this thesis.

The results presented in Chapter 2 except §2.6 are contained in the preprint [69]. Chapter 3
is a combination of the preprints [70] and the manuscript [71] which are the collaborations with
the co-author Eric Siero (Carl von Ossietzky University of Oldenburg).

The author of this thesis, Jichen Yang, contributed the main analyses and the numerical
computations under the supervision of Jens Rademacher, except the numerical implementation
and creation of figures in §3.6.2 contributed by the co-author Eric Siero.



Chapter 2

Reaction-subdiffusion systems

2.1 Introduction

We study the in/stability properties for three classes of reaction-subdiffusion equations (systems)
mentioned in §1.3. We recall these models with two components and the scalar cases as follows.

Subdiffusion with extra source and sink We consider the scalar case

∂tu = dD1−γ
0,t ∂

2
xu + f (u), u ∈ R, (2.1)

where d > 0 is the diffusion coefficient and f (u) is the nonlinear reaction term. We refer to [24]
for the derivation of this equations, also cf. (2.17). The corresponding model for two components
is given by [25]

∂tu = DD
1−γ
0,t ∂

2
xu + F(u), u ∈ R2, (2.2)

where u ∈ R2 is a vector of the perturbation densities, D = diag(1, d) is a diagonal matrix
of diffusion coefficients with positive diagonal entries, and F(u) is a nonlinear vector where
F : R2 → R2.

Subdiffusion with linear creation and annihilation The scalar equation is given by [23]

∂tu = deatD1−γ
0,t

(
e−at∂2

xu
)
+ au, u ∈ R, (2.3)

where a ∈ R is the reaction rate. See also (2.18) for the derivation. The corresponding model
for two components is given by [30, 47], with a constant matrix A ∈ R2×2 as

∂tu = DeAtD1−γ
0,t

(
e−At∂2

xu
)
+ Au, u ∈ R2. (2.4)

Subdiffusion with nonlinear creation and annihilation We recall the nonlinear model (1.7)
as follow

∂tu = d∂2
x

(
e
∫ t

0 r(u(x,τ))dτD
1−γ
0,t

(
ue−

∫ t

0 r(u(x,τ))dτ
))
+ r(u)u, u ∈ R,

13
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where r : R→ R. We refer to [14] for the details of the derivation. We focus on the linearisation
in non-zero homogeneous steady state (1.8) reads

∂tu = d∂2
x

(
D

1−γ
0,t u − σD

−γ
0,t u + σD1−γ

0,t 1 · D−1
0,tu

)
+ σu.

In particular, the stability of the solution for σ < 0.

This chapter is organised as follows: In §2.2, we briefly illustrate the derivations of the
subdiffusion and three different reaction-subdiffusion equations. We introduce the background
on fractional calculus, subdiffusion and Turing instability in §2.3. In §2.4, we consider (2.2)
and perform a detailed spectral analysis. We prove the local convergence theorem, obtain large
wavenumber asymptotics and show the Turing instability results. In §2.5, we consider (2.4) and
give the analogous convergence theorem of spectra and the Turing instability analysis. In §2.6
we consider (1.7) and particularly the linearisation (1.8). We prove a local energy estimate, the
existence and uniqueness of the Fourier solutions as well as their dynamics. We illustrate the
results with a number of numerical computations.

2.2 Subdiffusion and reactions

We introduce the derivations of the diffusion, subdiffusion and reaction-subdiffusion equations
from CTRW. Let u(x, t) ∈ R be the density or the concentration of the substances at position
x ∈ R and time t ≥ 0. We start with the following balance equation

u(x, t) = u(x, 0)Ψ(t) +
∫
R

∫ t

0
u(y, s)ϕ(x − y)w(t − s)dsdy, (2.5)

where ϕ(x) and w(t) are the PDFs of displacement and waiting time, respectively. The so-called
cumulative function Ψ(t) =

∫ ∞

t
w(s)ds represents the probability that particles have no jump

during the time interval (0, t). The physical interpretation of the summands on the right-hand
side as follows: The first summand represents the particles that stay at the position x from the
initial time up to the time t; the second summand represents the particles which moved from
some position y and some past time s < t to the position x and stay until time t. This is an
integral equation which is nonlocal in both space and time, and the solutions provide the complete
information of the diffusion processes. Using Fourier and Laplace transforms in space and time,
respectively (cf. Appendices A.1 & A.2), the balance equation (2.5) leads to the following
algebraic equation

ˆ̃u(q, s) =
1 − w̃(s)

s
û0(q)

1 − ϕ̂(q)w̃(s)
(2.6)

where the ‘hat’ and the ‘tilde’ represent the Fourier and Laplace transforms, respectively; q is the
spatial frequency (also called wavenumber), and s is the temporal frequency; û0(q) is the Fourier
transform of the initial condition u(x, 0) = u0(x).
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Normal diffusion Let us consider a PDF of jump length given by the Gaussian distribution

ϕ(x) =
1

√
4πσ2

exp
(
−

x2

4σ2

)
(2.7)

which leads to the finite variance Σ2 = 2σ2 < ∞, together with a PDF of waiting time given by
an exponentially decaying function

w(t) =
1
τ

exp
(
−

t
τ

)
(2.8)

which leads to the finite expectation T = τ < ∞. Then the corresponding Fourier and Laplace
transforms of the PDFs can be expanded by

ϕ̂(q) = 1 − σ2q2 + O(q4), (2.9)

w̃(s) = 1 − τs + O(s2), (2.10)

for sufficiently small |q |, |s | ≪ 1. Small q and s in Fourier and Laplace spaces are corresponding
to the large-scale and long-time limits in the physical space, respectively. Substituting (2.9) and
(2.10) into (2.6) and the leading order reads

ˆ̃u(q, s) =
û0(q)

s + dq2 , d = σ2/τ. (2.11)

Then by using inverse Fourier-Laplace transform, the solution in physical space is given by

u(x, t) =
1

√
4πdt

∫
R

e−
|x−y |2

4dt u0(y)dy. (2.12)

On the other hand, rearranging the equation (2.11) yields

s ˆ̃u(q, s) − û0(q) = −dq2 ˆ̃u(q, s)

and using inverse Fourier-Laplace transform, yields

ut = duxx . (2.13)

Notably, it is well known that the function (2.12) is the solution of (2.13) with initial condition
u(x, 0) = u0(x). Since the PDFs of jump length and waiting time are both exponentially decaying,
the (nonlocal) integral equation (2.5) finally reduces to the (local) diffusion equation (2.13) at
the leading order.

Subdiffusion Let us consider the waiting time PDF given by an algebraically decaying function,
cf. [35, Eq. 4.48], which has asymptotic behaviour

w(t) ∼
γ

Γ(1 − γ)

τγ

t1+γ for t ≫ 1, (2.14)

together with the jump length PDF given by Gaussian distribution (2.7). One can obtain the
Laplace transform w̃(s) using the Tauberian theorem which relates the behaviour of w̃(s) near
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the origin to the asymptotic behaviour of w(t) as t → ∞ [15]. As a result, the Laplace transform
of w(t) is given by

w̃(s) ∼ 1 − (τs)γ as s → 0

cf. [35]. Analogous to the derivation of the diffusion equation, substituting the above w̃(s)
together with (2.9) into (2.6) gives the leading order

ˆ̃u(q, s) =
û0(q)

s + s1−γdγq2 , dγ = σ2/τγ . (2.15)

Using inverse Fourier-Laplace transform, yields

u(x, t) = (Φ(·, t) ∗ u0)(x)

where Φ(x, t) is the fundamental solution (Green’s function) of the subdiffusion equation and
can be expressed by the series expansion (2.31) below. On the other hand, reformulating (2.15)
yields,

s ˆ̃u(q, s) − û0(q) = −s1−γdγq2 ˆ̃u(q, s),

and using the inverse Fourier-Laplace transform, yields

ut = D
1−γ
0,t dγuxx, (2.16)

with time-fractional Riemann-Liouville derivative D1−γ
0,t , cf. Definition 2.3.2, which is a nonlocal

operator and thus causes memory in time. Unlike the normal diffusion, due to the slower decaying
property of the waiting time PDF, the integral equation (2.5) cannot be localised by simply
choosing the leading order term. In §2.3.2 below, we introduce some fundamental knowledge
about the subdiffusion equation. We refer to [32, 33, 38] for more details about (1.3)

Subdiffusion with extra source and sink In [24], a balance equation for the density of
substances u(x, t) ∈ R at position x ∈ R and time t ≥ 0 is derived from the CTRW as

u(x, t) = u(x, 0)Ψ(t) +
∫
R

∫ t

0
u(y, s)ϕ(x − y)w(t − s)dsdy +

∫ t

0
h(x, s)Ψ(t − s)ds, (2.17)

with ϕ(x) the Gaussian distribution (2.7), and w(t) a power law distribution (2.14). The function
h(x, s) represents the added or removed particles at position x and time s < t, and thus the source
or sink.

A physical interpretation of the summands on the right-hand side of (2.17) as follows: The
first and second summands have the same meaning as those on the right-hand side of (2.5),
respectively; the last summand represents the particles which were added at (removed from)
position x and time s, and remain at (do not return to) position x until time t.

The Fourier-Laplace transform of (2.17) gives an algebraic equation in terms of the Fourier
transform of ϕ(x) and Laplace transform of w(t). Considering the leading order large-scale,
long-time limit and using the inverse Fourier-Laplace transform yield the reaction-subdiffusion
equation (2.1), where f (u(x, t)) replaces h(x, t) as the (nonlinear) reaction term, see [24] for
details. The corresponding model for two components (2.2) is obtained by extending to two-
components system.
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Subdiffusion with linear creation and annihilation The idea of the model derived in [23] is
that reactions occur at a constant per capita rate during the waiting time, i.e. ∂tu = au which
gives u(x, t) = u(x, t0)ea(t−t0). The resulting analogue to the balance equation (2.5) is

u(x, t) = u(x, 0)eatΨ(t) +
∫
R

∫ t

0
u(y, s)ea(t−s)ϕ(x − y)w(t − s)dsdy. (2.18)

Since all terms are positive for positive initial u(x, 0), the density u is always positive; the amount
of removed particles is always less than the existing ones. Compared to (2.17), the extra source
or sink does not appear in the process in (2.18). Instead, the particles are created or annihilated
intrinsically with exponential rate during the waiting time, cf. (2.5). The associated fractional
differential equation reads (2.3). In the case of two species, (2.4) can also be derived from the
CTRW, cf. [30].

Yet another model for which Turing-type instability has been discussed was proposed in [43]
and reads

v(x, t) = v(x, 0)δ(t) +
∫
Rn

∫ t

0
ϕ(x − y)w(t − s)eA(t−s)v(y, s)dsdy, (2.19)

where the components of v(x, t) ∈ RN represent the number of particles which arrive at the
position x ∈ Rn exactly at time t ≥ 0, and v(x, 0)δ(t) represents the input of particles at initial
time; here δ(t) is the Dirac delta distribution. The relation between (2.4) and (2.19) with
N = 2, n = 1 is given by

u(x, t) =
∫ t

0
Ψ(t − s)eA(t−s)v(x, s)ds, (2.20)

cf. [30], which can lead to different behaviour of the individual solutions for two models.

Subdiffusion with nonlinear creation and annihilation Concerning nonlinear reactions, [14]
incorporates the reaction term with nonlinear rate r(u) into subdiffusive transport. The equation
is then derived from CTRW and characterised by balance equations

u(x, t) = u(x, 0)e
∫ t

0 r(u(x,s))ds
Ψ(t) +

∫ t

0
v(x, s)e

∫ t

τ
r(u(x,s))ds

Ψ(t − τ)dτ, (2.21)

v(x, t) =
∫
R

u(x − y, 0)e
∫ t

0 r(u(x,s))dsϕ(y)w(t)dy

+

∫ t

0

∫
R
v(x − y, τ)e

∫ t

τ
r(u(x−y,s))dsϕ(y)w(t − τ)dydτ, (2.22)

where v(x, t) ∈ R represents the numbers of particles arrive at position x ∈ R exactly at time
t ≥ 0. Combining (2.21) with (2.22) together and using Fourier-Laplace transform give the
nonlinear reaction-subdiffusion equation (1.7). We refer to [14] for the physical interpretation
and the details of the derivation.
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2.3 Preliminaries

2.3.1 Fractional calculus

We define the Riemann-Liouville fractional integral and derivative for the subdiffusion range
γ ∈ (0, 1).

Definition 2.3.1. Let f (t) ∈ L1(0,T) for any T > 0. The integral

(D
−γ
0,t f )(t) :=

∫ t

0

(t − s)γ−1

Γ(γ)
f (s)ds, γ ∈ (0, 1), (2.23)

is called fractional integral of the order γ, where Γ(γ) is Gamma function.

This fractional integral is the (Laplace) convolution with kernel kγ(t) := tγ−1/Γ(γ) via

(kγ ∗ f )(t) :=
∫ t

0
kγ(t − s) f (s)ds, (2.24)

i.e., (D−γ
0,t f )(t) = (kγ ∗ f )(t). Notably, for γ = 1 we get (D−γ

0,t f )(t) =
∫ t

0 f (s)ds.

Definition 2.3.2. For f : [0,T] → R the Riemann-Liouville fractional derivative of order 1 − γ

is (formally) defined as

(D
1−γ
0,t f )(t) :=

d
dt
(kγ ∗ f )(t) =

d
dt

∫ t

0

(t − s)γ−1

Γ(γ)
f (s)ds, γ ∈ (0, 1). (2.25)

Notably, this fractional derivative is non-zero on constants,

(D
1−γ
0,t 1)(t) = kγ(t),

which tends to zero as tγ−1 for t → ∞ and is unbounded for t → 0. At γ = 1, D
1−γ
0,t is

the identity operator, i.e., (D
1−γ
0,t f )(t) = f (t), while for γ = 0, (D

1−γ
0,t f )(t) formally yields

(d/dt) (δ ∗ f ) (t) = f ′(t) with Dirac delta distribution δ(t) and ′ := d/dt.

A simple sufficient condition for the existence of the Riemann-Liouville fractional derivative
is as follows.

Lemma 2.3.3 ( [53], Lemma 2.2). Let f (t) ∈ AC([0,T]), then (D
1−γ
0,t f )(t) exists almost every-

where for γ ∈ (0, 1). Moreover (D1−γ
0,t f )(t) ∈ Lp(0,T), 1 ≤ p < 1/(1 − γ), and

(D
1−γ
0,t f )(t) = (kγ ∗ f ′)(t) + kγ(t) f (0).

Here AC([0,T]) is the space of functions f which are absolutely continuous on [0,T], i.e.,
f (t) = c +

∫ t

0 g(s)ds for some g ∈ L1(0,T) and constant c.

The Laplace transform, denoted by L, cf. Appendix A.2, will be used below and has the
following property, see also [49, §2.8], [27, §2.2].
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Lemma 2.3.4. Let f : [0,∞) → R be exponentially bounded, i.e., | f (t)| ≤ Aect for some A > 0
and c ∈ R. For Re(s) > max{0, c} and γ ∈ (0, 1) the following hold.

(1) If f (t) ∈ L1(0,T) for any T > 0, then (LD
−γ
0,t f )(s) = s−γ (L f ) (s).

(2) If f (t) ∈ AC([0,T]) for any T > 0, then (D
−γ
0,t f )(0) = 0 and

(LD
1−γ
0,t f )(s) = s1−γ (L f ) (s). (2.26)

Proof. This directly follows from [27, Lemma 2.14 and Remark 2.8], where Re(s) > max{0, c}
stems from the calculation of (LD

−γ
0,t f )(s) and guarantees convergence of the Laplace transform

integral. In (2) we also used that f (t) ∈ AC([0,T]) is bounded so that (D−γ
0,t f )(0) = 0. □

2.3.2 Subdiffusion equation

As mentioned, the analogue of the heat equation is the basic time-fractional diffusion equation is

∂tu = dD1−γ
0,t ∂

2
xu, u ∈ R, x ∈ R, (2.27)

with diffusion coefficient d > 0, which we refer to as the subdiffusion equation. Compared to
the heat equation, it is more subtle to see that solutions (2.27) remain positive and to determine
the decay properties. We found this scattered in the literature and next give a brief account of
these results.

For the Fourier-Laplace transform, the right-hand side of (2.27) defines the linear operator
Lsub := D

1−γ
0,t ∂

2
x with Lsub : AC([0,T]; H2(R)) → L1(0,T ; L2(R)).

The Green’s function of (2.27) has the Fourier transform [38, Eq. 49]

Φ̂(q, t) = Eγ(−dq2tγ), (2.28)

where Eγ(z) =
∑∞

n=0 zn/Γ(1 + nγ) is the Mittag-Leffler function and q is the wavenumber. The
function (2.28) possesses the asymptotic behaviour [39, Eq. 20]

Eγ(−dq2tγ) ∼
⎧⎪⎪⎨⎪⎪⎩

exp(− dq2tγ

Γ(1+γ) ), t ≪ (dq2)1/γ

(dq2tγΓ(1 − γ))−1, t ≫ (dq2)1/γ
(2.29)

which shows the effect of memory for non-zero wavenumber: short time exponential decay and
long time algebraic decay, here with power −γ. Note the above separation of decay depends on
the wavenumber. In Fourier-Laplace space, the Green’s function of (2.27) is given by

(LΦ̂)(q, s) = (s + dq2s1−γ)−1, Re(s) > 0, (2.30)

and for the inverse Laplace transform the poles of (2.30) with non-zero s contribute to the
exponential growth/decay, while the trivial pole creates the algebraic decay, cf. Theorem 2.5.4
below.
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We observe that the solutions to (2.27) have a self-similar scaling property, i.e. if u(x, t)
solves (2.27) then so does u(εx, ε2/γt) for ε ∈ R. The similarity variable x/tγ/2 leads to a series
expansion of the Green’s function [38, Eq. 46] [32, Eq. 4.23] given by

Φ(x, t) =
1

√
4dtγ

∞∑
n=0

(−1)n

n!Γ
(
1 −

γ
2 −

γ
2 n

) (
|x |

√
dtγ

)n
, t > 0, (2.31)

In [32] this is related to the Wright function, which turns out to be positive and algebraically
decaying locally uniformly in x for t ≫ 1 with power −γ/2, and with power −γ/(4 − 2γ) ∈

(−γ/2, 0) for |x | ≫
√

dtγ. We give a few details in Appendix A.3.

As an aside we remark that the initial-boundary value problem (2.27) with homogeneous
Dirichlet boundary condition has been studied in [34]. Here solutions decay pointwise alge-
braically with power −γ for t ≫ 1, i.e., faster than on the unbounded domain.

2.3.3 Turing instability

Consider a classical reaction-diffusion system (1.1) with two components, i.e., N = 2, namely

∂tu = D∂2
xu + F(u), u ∈ R2, x ∈ R, (2.32)

where u is the vector of density of the species, F(u) represents the reaction kinetics where
F : R2 → R2 and D = diag(1, d) is the diagonal matrix of positive constant diffusion coefficients.
Suppose that (2.32) possesses a homogeneous steady state u∗ = (u1∗, u2∗)

T , i.e., F(u∗) = 0. The
linearisation of (2.32) about u∗ is given by

∂tu = D∂2
xu + Au, A = (∂uF(u))u=u∗ =:

(
a1 a2

a3 a4

)
. (2.33)

In an activator-inhibitor system a1 > 0 and a4 < 0. A Turing or diffusion-driven instability
occurs if the homogeneous steady state of (2.32) is strictly linearly stable in the absence of
diffusion, but is linearly unstable in the presence of diffusion. Being a 2-by-2 matrix, strictly
linear stability without diffusion means tr(A) = a1 + a4 < 0 and det(A) = a1a4 − a2a3 > 0.

The right-hand side of (2.33) defines the linear operator L := D∂2
x + A, whose eigenvalue

problem reads
Lu = D∂2

xu + Au = su,

where s is the temporal eigenvalue. In Fourier space, the eigenvalue problem becomes

Lû = −q2Dû + Aû = sû,

where q is the wavenumber, and yields the dispersion relation

Dreg(s, q2) := det
(
sId + q2D − A

)
=

(
s + q2 − a1

) (
s + dq2 − a4

)
− a2a3 = 0. (2.34)
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The solutions set Λreg := {s ∈ C : Dreg(s, q2) = 0 for a q ∈ R} is the L2-spectrum of L with
domain (H2(R))2, e.g., [54]. In order to distinguish this from spectra in the subdiffusion cases,
we refer to it as the regular spectrum.

Concerning (2.32), the homogeneous steady state u∗ is called strictly spectrally stable (un-
stable) if max(Re(Λreg)) < 0 (> 0). It is then also linearly and nonlinearly stable (unstable) for
(2.33) and (2.32), respectively [54]. Furthermore, it is well known [41, Eq. 2.27] that there exists
a critical diffusion coefficient (also called Turing bifurcation point or Turing threshold) dc for
which (i) sgn(max(Re(Λreg))) = sgn(d − dc) and (ii) in case d = dc we have Dreg(sc(q), q2) = 0
for q2 ≈ q2

c with real sc ≈ −s0(q − qc)2, s0 > 0.

2.4 Subdiffusion with source and sink

As the first reaction-subdiffusion model, we consider (2.2). We will study linear stability
properties of a homogeneous steady state u∗ where F(u∗) = 0.

The (formal) linearisation of (2.2) in u∗ reads

∂tu = DD
1−γ
0,t ∂

2
xu + Au, u ∈ R2, A ∈ R2×2, (2.35)

its Fourier-transform with respect to x ∈ R is

∂t û = −q2DD
1−γ
0,t û + Aû, u ∈ R2, (2.36)

and the Fourier-Laplace transform reads(
sId + s1−γq2D − A

)
Lû = û0, Re(s) > 0, q ∈ R,

Analogous to (2.34) we obtain the dispersion relation

Dss(s, q2) := det
(
sId + s1−γq2D − A

)
=

(
s + s1−γq2 − a1

) (
s + s1−γdq2 − a4

)
− a2a3 = 0, s ∈ Ω+0 ,

where Ω+0 := {s ∈ C : arg(s) ∈ (−π/2, π/2)}.

Branch and branch cut Since s1−γ is a multivalued function in C, we need to choose a branch
which preserves positive reals. For given q ∈ R we choose θ1(q) ∈ (0, π/2) such that on the
branch cut

B
θ1(q)
0 := {s ∈ C : Im(s)/Re(s) = tan(θ1(q)), Re(s) < 0}

there is no solution of the dispersion relation, i.e., Dss(s, q2) , 0 for s ∈ B
θ1(q)
0 .

Since Theorems 2.4.5 for (2.36) and Theorem 2.5.4 for (2.4) give decay and growth behaviour
essentially independent of θ1, for simplicity we suppress the dependence of θ1 on q. The
corresponding principal branch is defined by

Ω0 := {s ∈ C \ {0} : arg(s) ∈ (−π + θ1, π + θ1), θ1 ∈ (0, π/2)}.
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Setting sδ = z, where δ := 1 − γ, we obtain z ∈ Σ0 := {z ∈ C \ {0} : arg(z) ∈ ((−π + θ1)δ, (π +

θ1)δ)} if and only if s ∈ Ω0. Since Re(s) > 0, we restrict our dispersion relation to s ∈ Ω+0 and
z ∈ Σ+0 := {z ∈ Σ0 : arg(z) ∈ (−πδ/2, πδ/2)}.

Remark 2.4.1. In the computation of the ILT, we consider the integral along a vertical line in
Ω+0 . It is natural to take the Bromwich contour (Fig. B.1) and combine it with the residue theorem
in order to calculate the ILT. However, this does not only depend on the roots of the dispersion
relation in Ω+0 , but also in Ω0−

0 := Ω0 \ Ω
+
0 . Hence, in order to study the temporal behaviour of

û, we extend the domain of Dss and consider

Dss(s, q2) =
(
s + s1−γq2 − a1

) (
s + s1−γdq2 − a4

)
− a2a3 = 0, s ∈ Ω0. (2.37)

Definition 2.4.2. We call the set of roots Λ+ss := {s ∈ Ω+0 : Dss(s, q2) = 0 for a q ∈ R}

(subdiffusion) spectrum of the linear operator Lss := DD
1−γ
0,t ∂

2
x + A, and the set of roots

Λ0−
ss := {s ∈ Ω0−

0 : Dss(s, q2) = 0 for a q ∈ R} (subdiffusion) pseudo-spectrum of Lss.

We denote Λss := Λ0−
ss ∪ Λ+ss, Ω−

0 := Ω0−
0 \ iR. As usual for spectral stability, we say the

(pseudo-)spectrum of Lss is (strictly) stable (unstable) if sup(Re(Λss)) < 0 (> 0).

For our result on algebraic decay, the expansion yields the following technical hypotheses for
non-zero coefficients.

Hypothesis 2.4.3. Given q ∈ R and reduced fraction γ = 1 − ℓ/m, ℓ,m ∈ Z+, let k j be the
multiplicity of the roots zj of the polynomial in z of degree 2m defined by Dss(zm, q2), so∑

j k j = 2m. Let

αjk :=
1

(k j − k)!
lim
z→z j

(
d
dz

)k j−k (z − zj)k j P(zm)
Dss(zm, q2)

and, for at least one of P(s) = 1 or P(s) = s + sℓ/mdq2 − a4 or P(s) = s + sℓ/mq2 − a1, assume

∑
j

k j∑
k=1

αjk k(−zj)−k−1 , 0.

Remark 2.4.4. For simple roots, k j = 1 for all j, we show in Appendix B.1 that Hypothesis
2.4.3 simplifies to

∑2m
j=1 P(zmj )/(∂sDss(zmj , q

2)mzm+1
j ) , 0. Hypothesis 2.4.3 can be checked

numerically, e.g., for the model in [25, Section 4.4], we found the coefficient Calg is non-zero for
generic parameters, wavenumbers and anomalous exponents γ.

Theorem 2.4.5. Let γ ∈ (0, 1) ∩ Q be a reduced fraction with denominator m and λ :=
sup(Re(Λss)).

(1) If λ > 0 then S+ := {(s, q) ∈ Ω+0 × R : Dss(s, q2) = 0 and Re(s) maximal } , ∅ and
for any (s, q) ∈ S+ the solution to (2.36) for almost all initial data satisfies û(q, t) =
Cexptk−1est + o(tk−1eRe(s)t ) for a non-zero Cexp ∈ C2, where k is the multiplicity of root
z = s1/m of the polynomial Dss(zm, q2).
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(2) If λ = 0, then Q− := {q ∈ R \ {0} : s ∈ Ω−
0 and (s, q) solves Dss(s, q2) = 0} , ∅ and

for any q ∈ Q− there exists Calg ∈ C2 such that û(q, t) = Calgt−1−1/m + o(t−1−1/m), and
Calg , 0 under Hypothesis 2.4.3 for almost all initial data.

(3) If λ < 0 or Λss = ∅, then for any q ∈ R \ {0} there exists Calg ∈ C2 such that û(q, t) =
Calgt−1−1/m + o(t−1−1/m), and Calg , 0 under Hypothesis 2.4.3 for almost all initial data.

We defer the technical proof to Appendix B.1.
Regarding the case q = 0, note that (2.36) then reduces to ∂t û = Aû whose solutions decay

exponentially due to the assumption on the Turing instability.

Remark 2.4.6. A more detailed decomposition into exponential terms and algebraically decaying
terms, including formulae for Cexp,Calg is given in (B.4) ((B.6) in case of multiple roots).

In particular, Theorem 2.4.5 reveals the roots of (2.37) determine the temporal behaviour of
û as exponentially growing for unstable spectrum, and algebraically decaying for strictly stable
pseudo-spectrum. Therefore, the main work of the present section is to analyse the (pseudo-
)spectrum.

Remark 2.4.7. Somewhat surprisingly, the algebraic decay rate in Theorem 2.4.5 depends only
on the denominator of the rational γ. However, our approach does not apply to irrational γ for
which the decay remains an open problem to our knowledge.

Here we do not transfer the decay to physical x-space and related function spaces, since the
dependence of the constants in the estimate on the wavenumber are convoluted.

Notably, the algebraic decay with t−3/2 [25, Eq. 4.27] where γ = 1/2 and θ1 = 0 is a special
case of Theorem 2.4.5.

Remark 2.4.8. The ansatz u(x, t) = v(t)eiqx is a specific case of the Fourier transform and
substitution into (2.35) also gives the fractional ODE (2.36). Hence, the initial condition in
Theorem 2.4.5 can be seen as û(q, 0) = v̂0eiqx , where v̂0 ∈ R2. Such an ansatz can find spatially
period solutions, and can be applied equally to the model (2.4). We do not discuss this further
here.

2.4.1 Scalar case

In order to illustrate further the fundamental difference between γ = 1 (normal diffusion) and
γ , 1 (subdiffusion), we consider the scalar case of (2.35),

∂tu = dD1−γ
0,t ∂

2
xu + au, u ∈ R, a ∈ R. (2.38)

The dispersion relation is given by

dss(s, q2) = s + dq2sδ − a = 0, s ∈ Ω0, q ∈ R, (2.39)

where δ = 1 − γ. Clearly, s = a is the unique solution of (2.39) for q = 0.
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(a) δ = 2/5 < 1/2
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(b) δ = 3/5 > 1/2

Figure 2.1: Comparison of numerically computed regular spectra (blue solid, δ = 0) and pseudo-spectra
(red dotted) of (2.35) for a < 0, θ1 = π/2.

Remark 2.4.9. The branch point s = 0 is a solution to dss = 0 if and only if a = 0, i.e., the case
of the subdiffusion equation, cf. §2.3.2. Theorem 2.4.5 does not apply and the long term decay
is t−γ, which is as predicted by the more general Theorem 2.5.4 below.

In the following, we give some characteristics of the (pseudo-)spectrum of (2.38).

Lemma 2.4.10. For any δ ∈ (0, 1) a unique smooth curve of solutions s = s(q) to (2.39) crosses
s = a at q = 0. For 0 < |q | ≪ 1 we have s(q) < a if either a > 0 or a < 0 as well as δ ∈ (0, 1/2),
while s(q) > a if a < 0 and δ ∈ (1/2, 1).

Proof. Implicit differentiation of the left-hand side with respect to q2 and s at s = a, q = 0 gives
daδ and 1, respectively. The statement follows from the implicit function theorem and aδ > 0
for a > 0, and sgn(Re(aδ)) = sgn(1/2 − δ) for a < 0 with δ ∈ (0, 1). □

Lemma 2.4.10 shows the concavity of (pseudo-)spectrum for |q | ≪ 1, and Fig. 2.1 illustrate
it numerically. However, the concavity changes for larger |q |, cf. Fig. 2.1a. In the following, we
give the analysis and numerical computation of (pseudo-)spectrum.

Lemma 2.4.11. If a > 0, then for each q ∈ R the solution s = s(q) to (2.39) in Ω+0 is unique,
positive and satisfies lim |q |→∞ s(q) = 0.

Proof. First, we show that the solution of (2.39) must be positive in Ω+0 . Set s = reiθ , r > 0 and
θ ∈ (−π/2, π/2), then we can rewrite (2.39) as reiθ + dq2rδeiδθ = a. Since a ∈ R, the imaginary
part of the left-hand side must be zero, i.e., r sin(θ) + dq2rδ sin(δθ) = 0, which is equivalent to
θ = 0 since δ ∈ (0, 1). Hence we have s > 0.

Clearly, s = a is the unique solution for q = 0. Implicit differentiation of the left-hand side
of (2.39) with respect to s gives 1 + dq2δsδ−1 which is continuous and non-zero for any q ∈ R

and s > 0. Therefore, the uniqueness for |q | ≪ 1 can be extended to all q ∈ R.

Since s > 0 we can rescale q2 = κ2/sδ with κ ∈ R, cf. [42, Section 4.1], which gives

s + dκ2 − a = 0, s > 0, κ ∈ R. (2.40)

As a > 0, the solution of (2.40) is a parabola in the (κ, s)-plane and s → 0 for κ2 → a/d. Hence,
according to the scaling q2 → ∞ as κ2 → a/d. In contrast, s → 0 for q2 → ∞ in (q, s)-plane.
See the right column in Fig. 2.2. □
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(a) δ = 3/4 ∈ (2/3, 1), a < 0
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(b) δ = 3/4 ∈ (2/3, 1), a = 0
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(c) δ = 3/4 ∈ (2/3, 1), a > 0
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(d) δ = 1/4 ∈ (0, 1/3), a < 0
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(e) δ = 1/4 ∈ (0, 1/3), a = 0
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(f) δ = 1/4 ∈ (0, 1/3), a > 0

Figure 2.2: Model (2.38). Blue solid lines: regular spectra; red dotted lines: subdiffusion (pseudo-
)spectrum; green dashed lines: s(q) = 0 < Ω0. Here θ1 = π/2. In (b) the (pseudo-)spectrum is empty.
In case δ ∈ [1/3, 2/3]: the (pseudo-)spectrum for a = 0 and a > 0 are qualitatively same as (b) and (c),
respectively, whereas the pseudo-spectrum for a < 0 (hollow circle) is empty for large |q |.

Solving (2.39) explicitly for general a ∈ R, s ∈ Ω0, seems not possible, but we can approxi-
mate solutions for |q | ≫ 1 as follows.

Lemma 2.4.12. For any δ ∈ (0, 1), there exists a Q > 0, such that for q > Q, the solutions to
(2.39) are approximated by s0(q) and s∞(q), where

(1) s0(q) ∈ Ω+0 and lim |q |→∞ s0(q) = 0 for any a > 0,

(2) s0(q) ∈ Ω−
0 and lim |q |→∞ s0(q) = 0 for any a < 0 and δ ∈ (π/(π + θ1), 1),

(3) s∞(q) ∈ Ω−
0 and lim |q |→∞ s∞(q) = −∞ for any δ ∈ (0, θ1/(π + θ1)).

Proof. A straightforward computation gives the solutions to (2.39) for |q | ≫ 1 as

s0(q) =
(

a
dq2

)1/δ
+ o

(
q−2/δ

)
, (2.41)

s∞(q) =
(
−dq2

) 1
1−δ
+

a
1 − δ

+ o(1), (2.42)

where lim |q |→∞ o(1) = 0. See also the proof of Lemma 2.4.18 for s0(q) and s∞(q).

Concerning s0(q): For a > 0 the leading order term is positive real and lim |q |→∞ s0(q) = 0,
which coincides with Lemma 2.4.11. For a < 0 the argument of the leading order term is π/δ
so arg(s0) ∈ Ω0 if π/δ ∈ (−π + θ1, π + θ1) which leads to δ > π/(π + θ1) (cf. Fig. 2.2a). Since
δ ∈ (0, 1), we have π/δ > π, which leads to Re(s0) < 0.

Concerning s∞(q): We note that the leading order term is independent of a and its argument
is π/(1 − δ). Then we have arg(s∞) ∈ Ω0 if π/(1 − δ) ∈ (−π + θ1, π + θ1) which implies
δ < θ1/(π + θ1) (cf. bottom row in Fig. 2.2). Since δ ∈ (0, 1), we have π/(1 − δ) > π, which
leads to Re(s∞) < 0. □
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Remark 2.4.13. The choice of branch cut is relevant here: if θ1 → 0, then π/(π + θ1) → 1
and θ1/(π + θ1) → 0, which leads to the disappearance of red dotted (pseudo)-spectrum in
Fig. 2.2. Nevertheless, it is instructive to choose θ1 = π/2 as this reveals all phenomena in the
pseudo-spectrum, in particular regarding the relation to the regular spectrum.

We note that the plotting of s = 0 (green dashed) in the middle column of Fig. 2.2 only shows
the transition of s0(q) from negative to positive but is not in the (pseudo-)spectrum. Moreover,
for instance in Fig. 2.2b, the (pseudo-)spectrum is empty. Yet, by Theorem 2.4.5 there is still
algebraic decay, at least for rational δ.

For constant initial u(0, x) = u0 ∈ R (2.38) is the ODE Ûu = au so a < 0 indeed yields
exponential decay. Fourier-transforming (2.38) in x gives

∂t û = −dq2D
1−γ
0,t û + aû, (2.43)

and, for rational γ = n/m (reduced fraction), Theorem 2.4.5 implies each Fourier mode decays
algebraically as t−1−1/m for a < 0.

2.4.2 Convergence to regular spectrum

We return to the system (2.35) and study the convergence of subdiffusion (pseudo-)spectrum for
γ → 1, i.e., as the anomalous exponent approaches normal diffusion γ = 1. With δ = 1 − γ the
dispersion relation (2.37) can be written as

Dss(s, q2) = (s + sδq2 − a1)(s + sδdq2 − a4) − a2a3 = 0, s ∈ Ω0, (2.44)

and we consider δ → 0. In preparation, we note that the difference between subdiffusion and
regular dispersion relation is

E(s, q2) = Dss(s, q2) − Dreg(s, q2)

= (sδ − 1)
(
(q2 + dq2)s + dq4sδ + dq4 − a4q2 − a1dq2

)
.

Lemma 2.4.14. The subdiffusion (pseudo-)spectrum converges to the regular spectrum locally
uniformly in q ∈ R as γ → 1.

Proof. Denote f (s) := Dreg(s, q2) and g(s) := E(s, q2), then f (s) + g(s) = Dss(s, q2). First, we
claim that for fixed parameters and wavenumber q, g(s) → 0 locally uniformly in s ∈ Ω0 as
δ → 0. This follows from sδ − 1 = eδ ln s − 1 being holomorphic in Ω0 with eδ ln s − 1 → 0
pointwise in Ω0 as δ → 0.

Second, we discuss f (s). For fixed parameters and wavenumber q, there are two regular
eigenvalues s1, s2 ∈ C and f (s) , 0 for s , s1, s2, cf. Fig. 2.3a. We choose two disjoint open
balls Br1(s1) and Br2(s2), where Br∗(s∗) := {s ∈ Ω0 : |s − s∗ | < r∗}. Then we have f (s) , 0
for s ∈ ∂Brj (sj), j = 1, 2. From the first step, we know that g(s) → 0 as δ → 0, hence
| f (s)| > |g(s)| for s ∈ ∂Brj (sj), j = 1, 2 as δ → 0. Since f (s) and g(s) are holomorphic in Ω0,
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(a) (b)

Figure 2.3: Dashed straight lines: branch cut Bθ1
0 . Illustrations of the case when the regular spectrum at

fixed q is (a) different from 0 (b) contains the origin; here the grey region is the interior of the contour C.

Rouché’s theorem implies f + g also has two zeros s1(δ) and s2(δ) inside Br1(s1) and Br2(s2),
respectively. Since we can choose rj arbitrarily small as δ → 0 we have sj(δ) → sj locally
uniformly in q, j = 1, 2.

However, the regular spectrum can contain 0, whereas g(s) is not holomorphic on Bθ1
0 . In

such a case, we take a neighbourhood Bϵ (0) of the origin and choose a contour C such that its
interior covers a region near 0, but excludes Bϵ (0) and Bθ1

0 , cf. Fig. 2.3b. Since there is no zero
of f inside C, Rouché’s theorem implies that there is no zero of f + g inside C as δ → 0 either.
Hence the zeros of f + g have to be in Bϵ (0) and also such zeros of f + g will converge to 0 as
δ → 0. □

Theorem 2.4.15. For any compact set K ⊂⊂ Ω0, limγ→1(K ∩ Λss) = (K ∩ Λreg).

Proof. Lemma 2.4.14 shows that the subdiffusion (pseudo-)spectrum converges to the regular
spectrum in any compact set of wavenumber. Lemma 2.4.18 below tells us the subdiffusion
(pseudo-)spectrum either tends to 0 (denote by s0(q)) or the real part tends to −∞ for |q | ≫ 1,
i.e., outside the compact set of wavenumber. If the regular spectrum contains 0, then the (pseudo-
)spectrum naturally converges to the regular one in a compact set of Ω0. If the regular spectrum
is negative for maximum, then Corollary 2.4.23 below shows that s0(q) does not exist in Ω0 for
|q | ≫ 1 as δ → 0. Therefore, the claim is proved. □

We illustrate the convergence theorem numerically in Fig. 2.5.

2.4.3 Real spectrum and (pseudo-)spectrum for large wavenumber

As in the scalar case, we cannot solve the dispersion relation (2.44) explicitly in general. However,
as in Lemma 2.4.11 we can determine real unstable spectrum as follows. This was observed
in [42, Eq. 4.7] and we include the proof for completeness.
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Lemma 2.4.16. Dreg(sr, κ2) = 0 with κ ∈ R and sr > 0 if and only if Dss(sr, q2) = 0 with
q = κs−δ/2

r ∈ R.

Proof. Rescaling the wavenumber of the regular and subdiffusion dispersion relation (2.34) and
(2.44), we find the relation

Dreg(sr (κ), κ2) =
(
sr (κ) + κ2 − a1

) (
sr (κ) + dκ2 − a4

)
− a2a3

=

(
sr (κ) + sδr (κ)

κ2

sδr (κ)
− a1

) (
sr (κ) + sδr (κ)

dκ2

sδr (κ)
− a4

)
− a2a3

= Dss

(
sr (κ),

κ2

sδr (κ)

)
= Dss(sr (κ), q2(κ)),

where
q(κ) = κs−δ/2

r (κ), q(κ) ∈ R, (2.45)

and sr (κ) denotes the regular spectrum with wavenumber κ. □

The following consequence of the lemma was noticed in [42, Section 4.1]. Again for
completeness and in preparation of the following, we include the simple proof.

Proposition 2.4.17. For any δ ∈ (0, 1), if the diffusion coefficient d > dc, then there exists a curve
of real and strictly positive subdiffusion spectrum s0(q) with q ∈ [±qmin,±∞). Furthermore,
limd→dc qmin = ∞ and lim |q |→∞ s0(q) = 0. Specifically, s0(q) = sr (κ) and q = κs−δ/2

r ∈ R.

Proof. For d > dc there is a curve of real unstable regular spectrum sr (κ) > 0 and s0(q) is
given by Lemma 2.4.16, i.e., s0(q(κ)) = sr (κ). Specifically, there is an interval (κ2

−, κ
2
+) such that

sr (κ) > 0 for κ2 ∈ (κ2
−, κ

2
+). If κ2 → κ2

−, κ
2
+, then sr (κ) → 0, which leads to s0(q) → 0 and

q(κ) → ∞. Furthermore, from (2.45) q2
min := minκ2∈(κ2

−,κ
2
+)

q2(κ) = minκ2∈(κ2
−,κ

2
+)
κ2/sδr (κ), and

q2
min → ∞ as d → dc. □

We illustrate Proposition 2.4.17 numerically in Fig. 2.6. Note that the curve from Proposition
2.4.17 is only one part of the subdiffusion spectrum when d > dc. Similar to the scalar case,
next we discuss the (pseudo-)spectrum for |q | ≫ 1.

Lemma 2.4.18. For any δ ∈ (0, 1) the solutions to (2.44) for |q | ≫ 1 are approximated by
s∞1(q), s∞2(q) and s0±(q) that satisfy lim |q |→∞ s0±(q) = 0 and lim |q |→∞ Re(s∞j(q)) = −∞,
j = 1, 2. Moreover, there exists a Q > 0 such that for q > Q and δ ∈ (0, θ1/(π + θ1)) we have

Re(s∞1(q)) < Re
((
−Q2

) 1
1−δ
+

a1
1 − δ

+ 1
)
< 0,

Re(s∞2(q)) < Re
((
−dQ2

) 1
1−δ
+

a4
1 − δ

+ 1
)
< 0.
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Proof. We seek the asymptotic approximation of solutions to (2.44) for |q | ≫ 1 by rescaling
q = κ/ε, so q → ∞ for ε → 0. We show in Appendix C.1 that the approximate solutions are
given by

s∞1(q) =
(
−q2

) 1
1−δ
+

a1
1 − δ

+ O(qα−β), (2.46)

s∞2(q) =
(
−dq2

) 1
1−δ
+

a4
1 − δ

+ O(qα−β), (2.47)

s0±(q) = ε2/δ y
1/δ
1± + o(ε2/δ), (2.48)

where β > α = 2
1−δ > 0, and y1± are the solutions to the following quadratic equation

dκ4y2
1 − (a1d + a4)κ

2y1 + a1a4 − a2a3 = 0. (2.49)

These lead to the claimed results. We refer to Appendix C.1 for a detailed proof. □

Remark 2.4.19. We emphasise that s0±(q) do not converge to the regular spectrum pointwise in
q as δ → 0 as they move out of the principal branch for any fixed d as δ → 0 (cf. Corollary
2.4.23 and Fig. 2.4 below). It is the combination of parts s∞1 and s∞2, which converges to the
regular spectrum locally uniformly in q, relating to Theorem 2.4.15.

2.4.4 Spectral instability for large wavenumbers

Here we discuss the stability and instability of (pseudo-)spectrum of (2.35) for |q | ≫ 1 in Ω0.
Our aim is to give a complete picture of (pseudo-)spectrum and to understand how (pseudo-
)spectrum moves in Ω0 to instability. The onset of Turing instability, in particular the critical
diffusion coefficients d for the subdiffusion model, has been studied in [42]. We reformulate the
instability results scattered in [42] and combine these with the convergence theorem in §2.4.2
as well as additional results of this section. This yields Theorem 2.4.20; recall dc denotes the
critical diffusion coefficient for the onset of the Turing instability with normal diffusion.

Theorem 2.4.20. For any δ ∈ (0, 1), there exists a unique d∞
δ ∈ (−a4/a1, dc) and Q > 0 such

that for d > d∞
δ and any |q | > Q there is spectrum s(q) ∈ Ω+0 . In particular, sup(Re(Λss)) >

sup(Re(Λreg)) for d ∈ (d∞
δ , dc). Moreover, for any fixed d∗ ∈ (0, dc), there exists a δ∗ ∈ (0, 1]

such that sup(Re(Λss)) < 0 for any δ ∈ (0, δ∗).

Since d∞
δ < dc the subdiffusive transport of model (2.1) destabilises the homogeneous steady

state before normal diffusion does. This was already found in [25] and may seem counterintuitive
as subdiffusion heuristically slows down dynamics [38]. As mentioned, we add here a more
detailed analysis and include the transition to instability. Recall that for the subdiffusion model,
positive real parts imply exponential growth, so Theorem 2.4.20 means exponential growth of
Fourier modes with arbitrarily large wavenumbers. Moreover, the critical diffusion coefficient
d∞
δ has Turing-Hopf character, since the solutions to linearisation become unstable through

oscillatory modes.
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The remainder of this section combined proves in particular Theorem 2.4.20.

From (2.48), we observe that s0 ∈ Ω+0 (∈ Ω−
0 ) if y1/δ

1 ∈ Ω+0 (∈ Ω−
0 ) so we only discuss y1/δ

1 . In
case y

1/δ
1 ∈ iR the sign of Re(s0) is determined by higher order terms, which we do not consider.

We start from (2.49) and take κ = ±1, so q = ±1/ε and |q | → ∞ as ε → 0. Then (2.49)
becomes

P(y1) := dy2
1 − (a1d + a4)y1 + a1a4 − a2a3 = 0, (2.50)

which is quadratic in y1 and, since d > 0, the minimum of P is given by

Pmin =
1

4d

(
4d(a1a4 − a2a3) − (a1d + a4)

2
)
.

Case 1: Pmin ≤ 0. There are two real solutions to (2.50).

Case 1a: a1d + a4 > 0, i.e., d > −a4/a1. Equation (2.50) has one or two positive solutions,
which leads to positive y

1/δ
1± . It holds that

Pmin ≤ 0 ⇒ F(d) := a2
1d2 + (4a2a3 − 2a1a4)d + a2

4 ≥ 0, (2.51)

whose roots df r− and df r+ are both positive, but we exclude d ≤ df r− because df r− < −a4/a1

does not satisfy our assumption. Notably, df r+ = dc is the Turing bifurcation point of system
(2.32) and for d > dc there exists a curve of real and strictly positive s0(q) as q ∈ [±qmin,±∞),
cf. Proposition 2.4.17. For d = dc, (2.50) has a positive double root y1 which corresponds to
positive y

1/δ
1 , thus there exists a Q > 0 such that Re(s0(q)) > 0 for all |q | > Q. However, we do

not know whether Im(s0(q)) is zero or not due to the higher order term.

Case 1b: a1d + a4 < 0, i.e., d < −a4/a1. Equation (2.50) has one or two negative solutions
and in the present case we exclude d ≥ df r+. Since arg(y1±) = π, we have arg(y1/δ

1± ) = π/δ so that
y

1/δ
1± ∈ Ω0 if δ ∈ (π/(π + θ1), 1) and thus in fact y1/δ

1± ∈ Ω−
0 . In conclusion, if δ ∈ (π/(π + θ1), 1)

and d ≤ df r−, then y
1/δ
1 ∈ Ω−

0 . See also Remark C.2.4.

Case 1c: a1d + a4 = 0, i.e., d = −a4/a1. Since (a1a4 − a2a3) > 0, the minimum Pmin is
always positive, which is the next case.

Case 2: Pmin > 0. In this case, the solutions to (2.50) are complex conjugate. Denote
b := a1d + a4, ζ := 4d(a1a4 − a2a3) − (a1d + a4)

2; note Pmin > 0 implies ζ > 0.

The following lemma provides the explicit formula of critical diffusion coefficient d∞
δ , cf. the

implicit result [42, Eq. 4.25].

Lemma 2.4.21. For any δ ∈ (0, 1), there exists d∞
δ ∈ (−a4/a1, dc) with limδ→0 d∞

δ = dc, and
Q > 0 such that s0±(q) ∈ Ω+0 if d > d∞

δ and |q | > Q. Here d∞
δ is the larger root of

H(d) := a2
1d2 +

(
4(a2a3 − a1a4) cos2(πδ/2) + 2a1a4

)
d + a2

4 = 0. (2.52)



2.4. Subdiffusion with source and sink 31

(a) θ1 = π/2 (b) θ1 = 0

Figure 2.4: Existence and stability of large wavenumber (pseudo-)spectrum. Brown solid horizontal lines:
Turing instability threshold for normal diffusion in (2.32); purple dashed curves d = d∞

δ : Turing-Hopf
threshold for (2.2), i.e., s0± > 0 in regions (A), (E), whereas s0± ∈ Ω+0 with non-zero imaginary parts in
regions (B), (F). Orange dashed dotted curves d = d̃∞

δ : existence of s0+ ∈ Ω−
0 in regions (C), (G) and

s0± < Ω0 in regions (D), (H). Vertical dashed line δ = θ1/(π + θ1) where δ = 1/3 in (a) and δ = 0 in (b):
existence of s∞1, s∞2 ∈ Ω−

0 in regions (E)–(H) and s∞1, s∞2 < Ω0 in regions (A)–(D).

Proof. First, consider b > 0, i.e., d > −a4/a1. The solutions to (2.50) are y1± = (b±i
√
ζ)/(2d) =:

ρe±iθ , where ±θ := arg(y1±) and ρ > 0. Clearly, y1/δ
1± ∈ Ω+0 if arg(y1/δ

1± ) = ±θ/δ ∈ (−π/2, π/2).
Since b > 0, we have θ = arg(y1+) = arctan(

√
ζ/b). Thus θ/δ ∈ (−π/2, π/2) ⇒ arctan(

√
ζ/b) ∈

(−πδ/2, πδ/2). Since arctan(
√
ζ/b) > 0, we obtain arctan(

√
ζ/b) ∈ (0, πδ/2) which leads to

4d(a1a4 − a2a3) − (a1d + a4)
2 < (a1d + a4)

2 tan2(πδ/2),

or equivalently H(d) > 0. The roots d− and d∞
δ are both real valued, but we exclude d < d− < d∞

δ

because d− < −a4/a1 contradicts the assumption.

For b ≤ 0, i.e., d ≤ −a4/a1 we have arg(y1+) ≥ π/2 and thus arg(y1/δ
1+ ) ≥ π/(2δ) <

(−π/2, π/2) as well as arg(y1/δ
1− ) ≤ −π/(2δ) < (−π/2, π/2).

The fact that d∞
δ < dc for δ ∈ (0, 1) follows by straightforward comparison of the solutions

to (2.51) and (2.52). □

The following makes the dependence of the pseudo-spectrum on the choice of branch cut
explicit. From Fig. 2.4 we can see that the range of existence is decreasing when θ1 → 0, i.e.,Bθ1

0
moves to the negative real line. In particular, for the canonical choice θ1 = 0 the pseudo-spectrum
s∞1, s∞2 is invisible. This explains the absence in [22, 25, 42, 44].

Proposition 2.4.22. For any δ ∈ (0, 1), there exist Q > 0 and d̃∞
δ ∈ [0, d∞

δ ) with limδ→0 d̃∞
δ = dc

such that for any |q | > Q we have s0+(q) ∈ Ω−
0 if d ∈ (d̃∞

δ , d
∞
δ ), and for any δ ∈ (0, π

π+θ1
),

s0±(q) < Ω0 if d < d̃∞
δ . More specifically, d̃∞

δ is given by

d̃∞
δ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d̃∞
δ+, δ ∈ (0, π

2(π+θ1)
)

−
a4
a1
, δ = π

2(π+θ1)

d̃∞
δ−, δ ∈ ( π

2(π+θ1)
, π
π+θ1

)
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where d̃∞
δ+ and d̃∞

δ− are the larger and smaller roots of

H̃(d) := a2
1d2 +

(
4(a2a3 − a1a4) cos2((π + θ1)δ) + 2a1a4

)
d + a2

4 = 0. (2.53)

Proof. The somewhat technical proof is given in Appendix C.2. □

Corollary 2.4.23. For any fixed d ∈ (0, dc), there exist δexist ∈ (0, 1] and Q > 0 such that
s0±(q) < Ω0 for any δ ∈ (0, δexist) and any |q | > Q.

Concerning the approximations s∞1 and s∞2, we have the following lemma.

Lemma 2.4.24. For any δ ∈ (0, 1) there exists a Q > 0 such that for any |q | > Q we have
s∞1(q), s∞2(q) ∈ Ω−

0 if δ ∈ (0, θ1
π+θ1

) whereas s∞1(q), s∞2(q) < Ω0 if δ ∈ [
θ1

π+θ1
, 1).

Proof. Recall the approximations (2.46), (2.47) for |q | ≫ 1 in the proof of Lemma 2.4.18. When
|q | → ∞, the arguments of s∞1 and s∞2 are determined by

(
−q2) 1

1−δ and
(
−dq2) 1

1−δ , respectively,
and are given by arg(s∞1) = arg(s∞2) =

π
1−δ . If π

1−δ ∈ (−π + θ1, π + θ1) ⇒ δ < θ1
π+θ1

, then
s∞1, s∞2 ∈ Ω0. Moreover, π

1−δ > π/2, so s∞1, s∞2 ∈ Ω−
0 . □

Theorem 2.4.20 now follows from combining Theorem 2.4.15, Proposition 2.4.17, Lemma
2.4.21, Proposition 2.4.22 and Lemma 2.4.24.

2.4.5 Numerical computations of (pseudo-)spectra

Here we present some numerical computations of (pseudo-)spectrum for finite wavenumber. We
choose θ1 = π/2 to give a most complete picture of the pseudo-spectrum. With s = zm and
δ = ℓ/m ∈ (0, 1), ℓ,m ∈ Z+ we get the dispersion relation

Dss(zm, q2) =
(
zm + zℓq2 − a1

) (
zm + zℓdq2 − a4

)
− a2a3 = 0. (2.54)

in the z-plane. The principal branch Ω0 =
{
s ∈ C \ {0} : arg(s) ∈

(
− π

2 ,
3π
2

)}
of s corresponds

to the branch in z-plane given by Σm0 :=
{
z ∈ C \ {0} : arg(z) ∈

(
− π

2m,
3π
2m

)}
. We set a1 = 1/2,

a2 = −3/16, a3 = 8, a4 = −1 so the regular Turing threshold is dc ≈ 19.798.

Fig. 2.5 illustrates Theorem 2.4.15: the subdiffusion (pseudo-)spectra and regular spectra
in the complex plane are plotted. We observe that when δ decreases, the subdiffusion (pseudo-
)spectrum approaches the regular spectrum in Ω0.

Fig. 2.6 illustrates Lemma 2.4.17: when the regular spectrum has positive part, unstable
subdiffusion spectrum along the scaled curve appears from large wavenumbers and moves towards
smaller wavenumbers as d increases. Note that maximum real parts of regular spectrum and
scaled curve are the same. For decreasing real parts the wavenumber of the scaled curve tends
to infinity.
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Figure 2.5: Comparison of numerically computed spectra of (2.35) beyond the regular Turing instability
for diffusion coefficient d = 30 and wavenumbers q = 0.02n, n = 0, 1, . . . , 150. Blue solid lines: regular
spectra; red dotted lines: subdiffusion (pseudo-)spectra.
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Figure 2.6: Comparison of real parts of spectra of versus wavenumber beyond the regular Turing instability
in (2.35) for anomalous exponent δ = 1/10 and q = 0.02n, n = 0, 1, . . . , 150. Blue solid lines: regular
spectra; red dotted lines: subdiffusion (pseudo-)spectra; green dashed lines: real and positive curves
scaled from the positive part of regular spectra.

In Fig. 2.7 we exhibit the behaviour of (pseudo-)spectrum as d changes. In Fig. 2.7a, d <

d̃∞
δ ≈ 16.5 so the real part of the regular spectrum and the more ‘unstable’ subdiffusion pseudo-

spectrum are both negative. As d increases, the pseudo-spectrum moves towards imaginary axis
and sup(Re(Λss)) = 0 for d̃∞

δ < d < d∞
δ ≈ 19.4, cf. Fig. 2.7b. For d > d∞

δ , the Turing-Hopf
threshold, the subdiffusion spectrum is unstable, whereas the regular spectrum is stable as d < dc,
the regular Turing threshold, cf. Fig. 2.7c. Finally, when d is larger than dc, both spectra are
unstable and additional purely real subdiffusion spectrum emerges as the scaled curve of regular
spectrum, cf. Fig. 2.7d. These variations coincide with moving through regions (H), (G), (F),
(E) in Fig. 2.4, respectively.

Finally, in Fig. 2.8 we compare the subdiffusion (pseudo-)spectrum in Ω0 and in Σm0 in order
to illustrate how pseudo-spectrum moves across the branch cut. For fixed δ and increasing d,
the pseudo-spectrum in the z-plane moves into Σm0 , giving rise to the part of pseudo-spectrum
which tends to zero. For d > dc, the spectra in the z-plane move along the real line, which leads
to the parts of the spectrum that tends to zero in Ω0. For fixed d and decreasing δ, the region Σm0
becomes narrower, which removes certain pseudo-spectrum.
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Figure 2.7: Comparison of spectra of (2.35) in the principal branch Ω0 for anomalous exponent δ = 1/10
and wavenumber q = 0.01n, n = 0, 1, . . . , 300. Blue solid lines: regular spectra; red dotted lines:
subdiffusion (pseudo-)spectra.

2.5 Subdiffusion with linear creation and annihilation

In this section we discuss the model (2.4) which was derived from a process that only removes
particles that have jumped to a location during the dynamics. Indeed, it was numerically shown
in [30] that the Green’s function is non-negative. Similar to the previous section we refine and
augment some of the analysis done in the literature, in particular regarding the transition to
Turing instability.

2.5.1 Scalar case

We recall the scalar case (2.3) and apply the Fourier-Laplace transform to obtain the dispersion
relation

dca(s, q2) := (s − a)1−γ
(
(s − a)γ + dq2

)
= 0, s ∈ Ωa, (2.55)

where Ωa := {s ∈ C \ {a} : arg(s − a) ∈ (−π + θ1, π + θ1), θ1 ∈ (0, π/2)} is the extended domain
from Re(s) > a of the Laplace transform, cf. Remark 2.4.1. We denote Ω+a := {s ∈ C \ {a} :
arg(s − a) ∈ (−π/2, π/2)} and Ω0−

a := Ωa \Ω
+
a.

Notably, s = a is a constant solution to dca(s, q2) = 0, but not in Ωa.

Definition 2.5.1. We call the set of roots λ+ca := {s ∈ Ω+a : dca(s, q2) = 0 for a q ∈ R} (subd-
iffusion) spectrum of the linear operator Lscal

ca := deatD1−γ
0,t (e−at∂2

x ·) + a, and the set of roots
λ0−

ca := {s ∈ Ω0−
a : dca(s, q2) = 0 for a q ∈ R} (subdiffusion) pseudo-spectrum of Lscal

ca .

We formulate the simple explicit solutions of (2.55) as a lemma for reference and illustrate
it numerically in Fig. 2.9.
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Figure 2.8: Model (2.35). Left column: the real part of spectra versus wavenumber; blue solid lines:
regular spectrum; red dotted lines: subdiffusion (pseudo-)spectrum. Right column: (pseudo-)spectrum
for q = 0.7 in z-plane; hollow circles: roots of (2.54); red dots: roots of (2.54) in Σm0 with θ1 = π/2;
dashed lines: borders of Σm0 .

Lemma 2.5.2. For any γ ∈ ( π
π+θ1

, 1) and |q | > 0, the solution to (2.55) is s = s∗(q) =
(dq2)1/γeiπ/γ + a ∈ Ωa. In particular, lim |q |→0 Re(s∗(q)) = a and lim |q |→∞ Re(s∗(q)) = −∞; if
γ ∈ (0, π

π+θ1
], then s∗(q) < Ωa for each q; moreover, s∗(0) < Ωa.

Proof. The solution is s(q) = (−dq2)1/γ + a = (dq2)1/γeiπ/γ + a. Since arg(s − a) = π/γ we
have s ∈ Ωa if π/γ ∈ (−π + θ1, π + θ1) ⇒ γ ∈ ( π

π+θ1
, 1). Since π/γ > π, we obtain that

Re(s − a) < 0 for |q | > 0, and lim |q |→∞ Re(s − a) = −∞. Moreover, s(q) < Ωa if γ < ( π
π+θ1

, 1),
and s(0) = a < Ωa. □

Notably, unlike the (pseudo-)spectrum of (2.38), the (pseudo-)spectrum of (2.3) is strictly
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Figure 2.9: Model (2.3): comparison of real parts of spectra versus wavenumber with the branch cut
angle θ1 = π/2 and γ = 3/4 > 2/3. Blue solid lines: regular spectra; red dotted lines: subdiffusion
(pseudo-)spectra; green dashed lines: s(q) = a < Ωa. Taking γ = 1/4 < 2/3 the results are the same
except the pseudo-spectrum is empty.

stable for |q | ≫ 1 and γ ∈ ( π
π+θ1

, 1).

The solution to (2.3) with initial condition u(x, 0) = δ(x) has been discussed in [23, Section
V.B] by establishing the relation with (2.27), which is given by

u(x, t) = Φ(x, t)eat, t > 0.

Recall that Φ(x, t) is the Green’s function to (2.27) given by (2.31). Notably, it follows that the
non-trivial solutions to (2.3) is exponentially growing (decaying) for a > 0 (a < 0) and t ≫ 1.

The solution to the system (2.4) with D = dId has been discussed as well [30, Section III],
which is given by

u(x, t) = Φ(x, t)eAtu0,

with initial condition u(x, 0) = δ(x)u0. The eigenvalues of A determine the decay as they are
both negative, so the Turing instability cannot happen. For general diffusion matrix this approach
fails and other instabilities occur as discussed next.

2.5.2 Spectral analysis

We turn to the system (2.4) with general diagonal diffusion matrix D = diag(1, d), cf. [47, Eq.
3.5], where the (pseudo-)spectrum determines the temporal features of solutions analogous to
Theorem 2.4.5. Moreover, we discuss the convergence of subdiffusion (pseudo-)spectrum when
the subdiffusive exponent γ → 1 as well as approximate (pseudo-)spectra to detect instabilities.

In order to simplify the problem, as in [30] we assume that A is a diagonalisable matrix, so
that

P =

(
a2 a2

µ1 − a1 µ2 − a1

)
, P−1 =

(
a1−µ2

a2(µ1−µ2)
1

µ1−µ2

−
a1−µ1

a2(µ1−µ2)
− 1

µ1−µ2

)
gives Ā := P−1 AP = diag(µ1, µ2) (cf. [43, Eq. 27]), where µ1 and µ2 are the eigenvalues of
A. The conditions for Turing instability become tr(A) = µ1 + µ2 < 0 and det(A) = µ1µ2 > 0.
Without loss of generality we assume throughout that Re(µ1) ≥ Re(µ2).
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Changing coordinates u = Pw turns (2.4) into

∂tw = D̄eĀtD1−γ
0,t

(
e−Āt∂2

xw
)
+ Āw, (2.56)

where D̄ := P−1DP =

(
d1 d2

d3 d4

)
. Transforming (2.56) into Fourier space yields

∂t ŵ = −q2D̄eĀtD1−γ
0,t

(
e−Āt ŵ

)
+ Āŵ. (2.57)

Laplace transform then gives for Re(s − µ1), Re(s − µ2) > 0 the dispersion relation

Dca(s, q2) := det
(
sId − Ā +

(
sId − Ā

)1−γ D̄q2
)

= det
( (

sId − Ā
)1−γ

)
det

( (
sId − Ā

)γ
+ D̄q2

)
= (s − µ1)

1−γ (s − µ2)
1−γ

( (
(s − µ1)

γ + d1q2
) (

(s − µ2)
γ + d4q2

)
− d2d3q4

)
= 0. (2.58)

As in §2.4, we extend the domain to Ωca ⊂ C as follows. Clearly, the finite branch points
of (2.58) are µ1, µ2. Taking s along a contour around µ1 and µ2, the change in argument of
s is γ(2π + 2π) = 4πγ and for γ , 1/2 we have e4iπγ , 1 so s = ∞ is a branch point of
(s − µ1)

γ(s − µ2)
γ. As we are most interested in the vicinity of γ = 1, we take γ ∈ (1/2, 1).

The conditions Re(µ1),Re(µ2) < 0 for a Turing instability yield two cases:

cc: µ1, µ2 are complex conjugate with negative real parts;

nr: µ1, µ2 are negative real.

In order to keep non-integer powers of positive reals on the positive real axis, we choose the
principal branch as follows:

cc: Ωcc
ca := {s ∈ C \ {µ1, µ2} : arg(s − µ1) ∈ (−π − θ1, π − θ1), arg(s − µ2) ∈ (−π + θ2, π +

θ2), θ1, θ2 ∈ (0, π/2), Im(µ1) > 0 > Im(µ2)} (cf. Fig. 2.10a), i.e., branch cuts B−θ1
µ1 and

B
θ2
µ2 .

nr: Ωnr
ca := {s ∈ C \ {µ1, µ2} : arg(s − µ1) ∈ (−π + θ1, π + θ1), arg(s − µ2) ∈ (−π + θ2, π +

θ2), θ1, θ2 ∈ (0, π/2), µ2 < µ1 < 0} (cf. Fig. 2.10b), i.e., branch cuts Bθ1
µ1 and Bθ2

µ2 .

We write Ωca for Ωcc
ca or Ωnr

ca whenever the case is not relevant, and denote:

Ω
+
ca := {s ∈ Ωca : Re(s) > Re(µ1)}, Ω

−
ca := {s ∈ Ωca : Re(s) < Re(µ1)}, Ω

0−
ca := Ωca \Ω

+
ca.

Definition 2.5.3. We call the set of roots Λ+ca := {s ∈ Ω+ca : Dca(s, q2) = 0 for a q ∈ R}

(subdiffusion) spectrum of the linear operator Lca := DeAtD1−γ
0,t (e−At∂2

x ·) + A, and the set of
roots Λ0−

ca := {s ∈ Ω0−
ca : Dca(s, q2) = 0 for a q ∈ R} (subdiffusion) pseudo-spectrum of Lca.
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We denote the union as Λca := Λ+ca ∪ Λ
0−
ca .

In preparation, we note that if 1 − γ = n/m ∈ Q then Dca(·, q2) can be cast as a polynomial
with respect to the two variables zj = (s − µj)

1/m, j = 1, 2, of degree m in each variable, given
by

Dca(z1, z2, q2) =
(
zm1 + zn1 d1q2

) (
zm2 + zn2 d4q2

)
− zn1 zn2 d2d3q4.

Now we can state the analogue of Theorem 2.4.5 for the present model.

Theorem 2.5.4. Let γ ∈ (0, 1) ∩ Q, λ := sup(Re(Λca)) and λ0 := Re(µ1) ≥ Re(µ2).

(1) If λ > λ0, then S+ := {(s, q) ∈ Ω+ca × R : Dca(s, q2) = 0, and Re(s) maximal } , ∅ and
for any (s, q) ∈ S+ the solution to (2.57) for almost all initial data satisfies ŵ(q, t) =
Cexptk−1est + o(tk−1eRe(s)t ) for a non-zero Cexp ∈ C2, where k = max{k j, j = 1, 2} and k j

is the multiplicity of zj = (s − µj)
1/m as the root of Dca(z1, z2, q2) = 0.

(2) If λ = λ0, then Q− := {q ∈ R \ {0} : s ∈ Ω−
ca and (s, q) solves Dca(s, q2) = 0} , ∅ and for

any q ∈ Q− there exists a non-zero Cbp ∈ C2 such that ŵ(q, t) = Cbp t−γeµ1t + o(t−γeλ0t )

for almost all initial data.

(3) If λ < λ0 or Λca = ∅, then for any q ∈ R \ {0} there exists a non-zero Cbp ∈ C2 such that
ŵ(q, t) = Cbp t−γeµ1t + o(t−γeλ0t ) for almost all initial data.

We defer the technical proof to Appendix B.2. Regarding the case q = 0, note that (2.57)
reduces to ∂ŵ = Āŵ, whose solutions decay exponentially.

Remark 2.5.5. The statement also holds for λ0 = 0 and scalar equations, and thus includes
(2.3) as well as the subdiffusion equation (2.27). Notably, for the latter Theorem 2.5.4 gives the
decay as t−γ (for rational γ), which coincides with that derived in §2.3.2 via (2.29).

Remark 2.5.6. As for Theorem 2.4.5 the method of proof only allows for rational γ and it would
be interesting to investigate the general case. Likewise, the dependence of the constants on q
and thus decay in, e.g., L2 is beyond the scope of this thesis.

Similar to Theorem 2.4.5, Theorem 2.5.4 reveals that the roots of (2.58) determine the
temporal behaviour of ŵ. However, in contrast to Theorem 2.4.5, the Turing instability condition
λ0 < 0 implies exponential decay for stable (pseudo-)spectrum. The key point is that on the one
hand µ1, µ2 are the branch points of (2.57), while for the branch point of (2.36) is the origin. On
the other hand, s = µ1, µ2 also solves the dispersion relation. This is the reason for the algebraic
decay t−γ compared with t−1−1/m in Theorem 2.4.5.

Remark 2.5.7. As mentioned in §2.2, model (2.4) is different from (2.19) discussed in [43] due
to (2.20), as well as the dispersion relations, cf. (2.58) and [43, Eq. 24]. This can be illustrated
for the scalar case. The dispersion relation of (2.19) reads (s − a)γ + dq2 = 0 which has no
roots on the branch point s = a for q , 0, whereas (2.55) does. Then according to Theorem
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(a) (b)

Figure 2.10: Branch cuts (dashed) and points (crosses) for (2.58), and regular spectrum (dots) s1, s2. (a)
Case cc; (b) case nr.

2.4.5, each Fourier mode of (2.19) with q , 0 decays algebraically as t−1−1/m, whereas the one
of (2.3) decays exponentially by Theorem 2.5.4.

In the multispecies case, the eigenvalues of A are roots of (2.58) as well as the branch points,
whereas they are not roots of [43, Eq. 24] in general. This implies the Fourier modes of (2.4)
and (2.19) have different decays. Another difference in the system case in [43, Eq. 28] is the
perhaps unrecognised implicit assumption that P−1(sId − A)γP is equal to (sId − P−1 AP)γ.

2.5.3 Convergence to regular spectrum

As in Theorem 2.4.15 the subdiffusion (pseudo-)spectrum converges to the regular spectrum as
γ → 1. The regular dispersion relation of (2.33) in the coordinates u = Pw reads

Dreg(s, q2) =
(
s − µ1 + d1q2

) (
s − µ2 + d4q2

)
− d2d3q4 = 0, s ∈ C (2.59)

which allows for direct comparison with the non-trivial factor of (2.58) given by

Dca2(s, q2) :=
(
(s − µ1)

γ + d1q2
) (

(s − µ2)
γ + d4q2

)
− d2d3q4 = 0, s ∈ Ωca. (2.60)

Notably, s = µ1, µ2 solve (2.58) for any q but are not in Ωca, while these are roots for (2.59) at
q = 0, and generically not otherwise.

Theorem 2.5.8. For any compact set K ⊂⊂ Ωca, limγ→1(K ∩ Λca) = (K ∩ Λreg).

Proof. The basis of the proof is the analogue of Lemma 2.4.14. In both cases, the application
of Rouché theorem near and away from the branch points are completely analogous to that in
Lemma 2.4.14, cf. Fig. 2.10. □
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Spectrum near zero and Turing instability

Since the onset of Turing instability concerns spectrum near the origin, we can analyse this by
Taylor expanding the dispersion relation at s = 0.

We will show that the Taylor expansion of Dca2 = 0 to quadratic order is

D̃ca2(s, q2) := s2 + γ−1
(
β1q2 − tr(A)

)
s + γ−2h(q2) = 0, (2.61)

where β1(γ, d) := c1 + c4d, β2(γ) := a1c4 − a2c3, β3(γ) := a4c1 − a3c2, and

C := P
(
−Ā

)1−γ P−1 =

(
c1 c2

c3 c4

)
, h(q2) := det(C) · dq4 − (β2d + β3) q2 + det(A).

Now the computation of the Turing instability parameters for (2.61) follows, with some caveats,
the approach for two component systems with regular diffusion. Since this gives the onset of
instability through the origin, the same follows for the subdiffusion spectrum. As detailed in the
following Theorem statement, the Turing instability parameters are

γcc :=
1
θ

arccot
(

a1
|µ| sin(θ)

+ cot(θ)
)
∈ (0, 1),

γnr :=
(
ln

(
a1 − µ1
a1 − µ2

)) (
ln

(
µ1
µ2

))−1
∈ (0, 1),

dγ := −
β3
β2
+

2
β2

2

(
det(AC) +

√
(det(AC))2 − β2β3 det(AC)

)
, q2

γ :=
β2dγ + β3

2dγ det(C)
.

We write Λϵ
ca := Λca ∩ Bϵ (0) for the spectrum within a small ball Bϵ (0) near the origin and set

λϵ := sup(Re(Λϵ
ca)).

Remark 2.5.9. The following Theorem holds verbatim for (2.61) instead of (2.60) and any ϵ ,
i.e., replacing Λϵ

ca by the roots of D̃ca2.

Theorem 2.5.10. For any sufficiently small ϵ > 0 there exists a unique minimal anomalous
exponent γA ∈ (0, 1) given by γcc in case cc and γnr in case nr, such that for any γ ∈ (0, γA),
either λϵ < 0, or Λϵ

ca = ∅, and for any γ ∈ (γA, 1) the following hold.

(1) dγ is the unique critical diffusion coefficient such that sgn(λϵ ) = sgn(d − dγ).

(2) For d = dγ, there exists a unique critical wavenumber given by qγ such that λϵ = 0,
Λϵ

ca ∩ iR = {0}, and D̃ca2(0, q2) = 0 precisely for q = qγ.

(3) limγ→γA dγ = +∞ and limγ→1 dγ = dc.

Proof. Case cc: Taylor expanding, with µj , 0, j = 1, 2,

(s − µj)
γ = (−µj)

γ + γ(−µj)
γ−j s + O(|s |2),
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gives the approximate dispersion relation (2.60) in Bϵ (0) quadratic in s as(
(−µ1)

γ + γ(−µ1)
γ−1s + d1q2

) (
(−µ2)

γ + γ(−µ2)
γ−1s + d4q2

)
− d2d3q4 = 0. (2.62)

In order to see the dependence on the diffusion ratio d, we perform the following transform.
First, multiply (2.62) with γ−1(−µ1)

1−γγ−1(−µ2)
1−γ and rewrite the resulting equation as

det
(
sId + γ−1q2D̄

(
−Ā

)1−γ
− γ−1 Ā

)
= 0.

Second, change coordinates through left-multiplying by P and right-multiplying by P−1 to

det
(
sId + γ−1q2DP

(
−Ā

)1−γ P−1 − γ−1 A
)
= 0.

Here the matrix C = P
(
−Ā

)1−γ P−1 can be expressed as

C =

(
c1 c2

c3 c4

)
=

(
(−µ1)

1−γ (a1−µ2)−(−µ2)
1−γ (a1−µ1)

µ1−µ2

a2((−µ1)
1−γ−(−µ2)

1−γ )
µ1−µ2

(a1−µ1)(a1−µ2)((−µ2)
1−γ−(−µ1)

1−γ )
a2(µ1−µ2)

(−µ2)
1−γ (a1−µ2)−(−µ1)

1−γ (a1−µ1)
µ1−µ2

)
.

from which somewhat tedious computations give D̃ca2(s, q2), and this isO(ϵ2)-close to Dca2(s, q2)

for s ∈ Bϵ (0).
We claim that β1 > 0 if d > 1. Set −µ1 = |µ|eiθ and −µ2 = |µ|e−iθ , where without loss of

generality θ ∈ (0, π/2). Then β1 simplifies, which directly shows the claim:

β1(γ, d) =
a1(d−1)((−µ2)

1−γ−(−µ1)
1−γ)+µ1µ2((−µ1)

−γ−(−µ2)
−γ )+d((−µ2)

2−γ−(−µ1)
2−γ)

µ1−µ2

=
a1(d − 1)|µ|−γ sin(θ(1 − γ)) + |µ|1−γ sin(θγ) + d |µ|1−γ sin(θ(2 − γ))

sin(θ)
.

Since tr(A) < 0, the prefactor of s in (2.61) is positive so that (2.61) has a solution s(q) > 0
if and only if h(q2) < 0 for some q. We note that det(A) > 0 and

det(C) = det((−Ā)1−γ) = (µ1µ2)
1−γ > 0,

so h(q2) < 0 for some real q requires

β2d + β3 > 0, (2.63)

where β3 < 0 follows by straightforward calculation. As to the sign of β2 we compute

β2(γ) = −
µ1µ2
µ1 − µ2

(
a1 ((−µ2)

−γ − (−µ1)
−γ) +

(
(−µ2)

1−γ − (−µ1)
1−γ

) )
=

|µ|1−γ

sin(θ)

(
a1 sin(θγ) − |µ| sin(θ(1 − γ))

)
.

Hence, H(γ) := a1 sin(θγ) − |µ| sin(θ(1 − γ)) has the sign of β2(γ), and β2(γ) = 0 if and only if
H(γ) = 0, which is equivalent to

cot(θγ) =
a1

|µ| sin(θ)
+ cot(θ). (2.64)
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The solution to (2.64) is given by γcc; note that it depends on A only. From (2.64) we know that
cot(θγcc) > cot(θ), so γcc < 1. Since

d
dγ

H(γ) = a1θ cos(θγ) + µθ cos(θ(1 − γ)) > 0.

we have sgn(H(γ)) = γ − γcc. For γ < γcc the condition (2.63) implies d < −β3/β2 < 0, which
violates the assumption d > 0. Hence, the following conditions must be satisfied

γ > γcc and d > −β3/β2 > 0, (2.65)

and γ → γ+cc implies β2 → 0+, which means d → +∞.
Straightforward computations give the minimum of h(q2) and the associated argument

hmin =
4d det(AC) − (β2d + β3)

2

4d det(C)
, q2

min =
β2d + β3
2d det(C)

.

If hmin < 0, then h(q2) < 0 for q2 ∈
(
q2
−, q

2
+

)
, where q2

± are the two roots of h(q2) = 0.
Furthermore, hmin < 0 gives

β2
2d2 + (2β2β3 − 4 det(AC)) d + β2

3 > 0,

whose boundary points are

d± = −
β3
β2
+

2
β2

2

(
det(AC) ±

√
(det(AC))2 − β2β3 det(AC)

)
.

Since the discriminant is positive d± ∈ R exist, but d < d− does not satisfy (2.65). Hence,
dγ is the Turing bifurcation point and satisfies Item (1) for (2.61). Since this means the onset
of instability is through the origin s = 0, the same and the following characterisation hold for
the subdiffusion spectrum sufficiently close to the origin. Moreover, limγ→γcc dγ = +∞ and
limγ→1 dγ = dc. The critical wavenumber is given by q2

γ.

Case nr: Similar to the case cc, the dispersion relation (2.60) can be approximated by (2.62)
within Bϵ (0), but here the minimum anomalous exponent is given by γnr. We note µ1 , µ2,
a1 , µ1 and a1 , µ2 due to the Turing conditions on A, which guarantees the existence of
γnr. □

This theorem shows that the critical spectrum of system (2.4) has the “Turing shape” of
regular diffusion, i.e., near the origin it is real, has maxima at selected wavenumbers, and crosses
the origin for increasing d. Moreover, the relation of reaction and subdiffusive motion in (2.4)
stabilises the solution, i.e., the more anomalous the diffusion is, the more ‘difficult’ in terms of
the diffusion ratio it is for the solution to become unstable. It is even impossible to be unstable
when the diffusion motion becomes too anomalous, i.e., is below γA. We illustrate the stable and
unstable region in §2.5.4, cf. Fig. 2.11 below.

Remark 2.5.11. Theorem 2.5.10 is valid only near the origin and thus instabilities through the
imaginary axis may be missed. However, due to Theorem 2.5.8, if γ is close to 1, this cannot
happen.
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(a) Case cc (b) Case nr

Figure 2.11: Plotted are samples of stability and instability regions of spectra for (2.4) near the origin in
terms of the Turing threshold dγ (purple solid curves), which terminates at the regular threshold dc and
lies above the minimum anomalous exponents γA (vertical dashed lines). (a) γA = 0.69, dc = 19.798 and
(b) γA = 0.27, dc = 3.28.

2.5.4 Numerical computations of spectra

We illustrate Theorem 2.5.8 with numerical computations for the cases cc and nr, respectively,
where A in (2.4) is given by

Acc =

(
1
2 − 3

16
8 −1

)
and Anr =

(
1 1

− 17
8 −2

)
.

Here Acc has eigenvalues µ± ≈ −0.25 ± 0.968i, and Anr has eigenvalues µ1 ≈ −0.854, µ2 ≈

−0.146. In Fig. 2.11 we plot the Turing instability threshold dγ and the minimum anomalous
exponent γA, and determine the stable and unstable region based on the results of §2.5.2.

In Fig. 2.12 we plot results with fixed diffusion coefficient d and different anomalous ex-
ponents γ. As predicted, the subdiffusion (pseudo-)spectrum approaches the regular one as γ
increases towards 1. Remark that in case nr a gap within the pseudo-spectra occurs as a result
of solutions to (2.60) outside Ωca.

In Fig. 2.13 we plot results with fixed anomalous exponent γ and different diffusion coeffi-
cients d for case cc. As predicted, the subdiffusion spectrum becomes unstable when d exceeds
dγ. Notably, the spectrum from (2.61) nicely approximates the numerical spectrum computed
from (2.60). Furthermore, the subdiffusive transport stabilises the spectrum, since the maximum
of the subdiffusion spectrum is less than that of the regular spectrum. The situation is similar
for case nr, except the subdiffusion (pseudo-)spectrum in this region connects with the regular
spectrum.

2.6 Subdiffusion with nonlinear creation and annihilation

Compared to the analysis of the previous sections, much less can be said about (1.7). We aim
to study the (formal) linearisation of (1.7) in homogeneous steady state u∗ with r(u∗) = 0, in
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(f) γ = 19/20

Figure 2.12: Plotted are (pseudo-)spectra of (2.4) for A = Acc, Anr for wavenumbers q = 0.04n, n =
0, 1, . . . , 100: regular diffusion (γ = 1, blue solid lines) and subdiffusion (γ ∈ (0, 1), red dotted lines), and
the eigenvalues of A (green diamonds). Top row: A = Acc (case cc), d = 15; bottom row: A = Anr (case
nr), d = 20.
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(c) d = 250

Figure 2.13: Plotted are (pseudo-)spectra of (2.4) for A = Acc and γ = 4/5. Subdiffusion (pseudo-)spectra
(red dotted) computed from (2.58), regular diffusion spectra (blue solid), and approximate subdiffusion
(pseudo-)spectra computed from (2.61) (green dashed). Horizontal dotted dashed lines are s = µ1 < Ωca.

particular its stability properties. This linearisation reads (1.8), where σ := r ′(u∗)u∗. Notably,
for u∗ = 0 this is (2.3) with a = r(0) discussed in §2.5. In contrast, for u∗ , 0 the model is rather
different.

We note that like all other scalar models (1.8) reduces to regular diffusion ut = duxx +σu at
γ = 1, to ut = σu for constant u(x, 0) = u0 ∈ R, and to the subdiffusion equation (2.27) at σ = 0
(corresponding to a = 0 for the other models). However, for σ , 0 equation (1.8) has a different
character and does not allow to determine the spectrum with the methods used before due to the
non-explicit Laplace transform acting on the product term D

1−γ
0,t 1 · D−1

0,tu.

Remark that for σ > 0, constant initial data remain so and grow exponentially, which implies
the expected instability of the non-zero homogeneous steady state.
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2.6.1 Energy estimate

In preparation of estimates, let us first consider two cases of (1.8) for which the problematic term
vanishes.

For γ = 0 (1.8) reduces to the PDE

ut = d
(
ut,xx − σuxx

)
+ σu ⇔ (1 − d∂xx)ut = σ(1 − d∂xx)u,

whose Fourier transform in x reads ût = σû, i.e., the dispersion relation is (λ −σ)(1+ dq2) = 0,
and û(t, q) = eσt û(0, q). In particular, σ < 0 (> 0) implies exponential decay (growth) of
∥u(·, t)∥L2(R).

Related to [64], we start with the following energy-type estimate of (1.8) for σ < 0.

Theorem 2.6.1. Let u(x, t) be the solution to (1.8) in C1([0,T]; H2(R)) with u(·, 0) = u0 ∈ H2(R)

for t ∈ [0,T], T > 0. For any γ ∈ (0, 1) and σ < 0, there exists a tσ , such that

d
dt

(
∥u(·, t)∥2

L2(R)
+ d




(kγ ∗ (ux)
2
)
(·, t)





L1(R)

)
< 0

for t ∈ [0,min{tσ,T}) with tσ = − 1
σ (2 − γ)

γ−2
γ−1 , where limγ→0 tσ = 4 and limγ→1 tσ = e.

Proof. The linear operator in (1.8) is given by

Lγ := d
(
D

1−γ
0,t − σD

−γ
0,t + σD

1−γ
0,t 1 · D−1

0,t

)
.

Testing (1.8) by u and integrating in space gives∫
R

ut · udx = −

∫
R
Lγux · uxdx +

∫
R
σu2dx.

so that

1
2

d
dt
∥u∥2

L2 = −d
∫
R

ux
d
dt
(kγ ∗ ux) − σ(kγ ∗ ux)ux + σkγ(t)(1 ∗ ux)uxdx + σ∥u∥2

L2 . (2.66)

Straightforward calculation [64, Lemma 2.2] provides the relation

u
d
dt
(kγ ∗ u) −

1
2

d
dt
(kγ ∗ u2) =

1
2

∫ t

0

(
−k ′

γ(s)
)
(u(t) − u(t − s))2ds +

1
2

kγ(t)(u(t))2,

and applying to (2.66) gives

1
2

d
dt
(∥u∥2

L2 + d∥kγ ∗ (ux)
2∥L1) = σ∥u∥2

L2 −
d
2

kγ(t)∥ux ∥
2
L2 + I1 + I2,

I1 := −
d
2

∫
R

∫ t

0
(−k ′

γ(s))(ux(x, t) − ux(x, t − s))2dsdx,

I2 := σd
∫
R

∫ t

0
(kγ(s) − kγ(t))ux(x, t)ux(x, t − s)dsdx.
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From σ < 0, kγ(t) > 0 and k ′
γ(t) < 0 for t ≥ 0, it is clear that I1 < 0, but the sign of I2 is unclear.

We will show that with the bound on t it holds that I1 + I2 ≤ 0. For this we compute

I1 + I2 = −d
∫
R

∫ t

0

( (
−k ′

γ(s)

2

) (
(ux(x, t))2 + (ux(x, t − s))2

)
+

(
k ′
γ(s) − σ(kγ(s) − kγ(t))

)
ux(x, t)ux(x, t − s)

)
dsdx.

If the integrand is nonnegative, then I1+I2 ≤ 0. Denote a := −k ′
γ(s)/2 > 0, b := k ′

γ(s)−σ(kγ(s)−
kγ(t)), f := ux(t) and g := ux(t − s), so the integrand can be written as a( f 2 + g2) + b f g =
−b
2

(
−2a
b

(
f 2 + g2) − 2 f g

)
≥ 0 if −2a ≤ b < 0 for all 0 ≤ s ≤ t. Clearly, −2a ≤ b is satisfied

for σ < 0, and b < 0 is equivalent to σ >
k′γ (s)

kγ (s)−kγ (t)
, and we analyse the function h(s) :=

k′γ (s)

kγ (s)−kγ (t)
=

(γ−1)sγ−2

sγ−1−tγ−1 in the following. We observe lims→0 h(s) = lims→t h(s) = −∞. Then we

calculate sup0≤s≤t h(s). Set the derivative (d/ds)h(s) = 0. The solution is s = s0 := (2 − γ)
1

γ−1 t,
where (2 − γ)

1
γ−1 ∈ (0, 1) implies 0 < s0 < t. We then evaluate (d2/ds2)h(s) at s = s0 and we

can get (d2/ds2)h(s0) < 0 for γ ∈ [0, 1]. Hence sup0≤s≤t h(s) = h(s0) = −(2 − γ)
γ−2
γ−1 /t < 0.

Therefore, if b < 0, then σ > h(s) for all s implies that σ > h(s0) = −(2 − γ)
γ−2
γ−1 /t, which leads

to t < − 1
σ (2 − γ)

γ−2
γ−1 = tσ . The limit at γ = 0 is obvious, the limit at γ = 1 a straightforward

application of L’Hospitals rule. □

Theorem 2.6.1 shows that the ‘energy’ of (1.8) decays at least locally in time, however,
we do not know the rate. Moreover, we observe that if σ tends to 0, i.e., to the subdiffusion
equation, then the guaranteed time of decay increases unboundedly. In contrast, if −σ increases
the guaranteed interval for decay becomes shorter. This result is somewhat counterintuitive and
in contrast to the global exponential decay for constant solutions. The reason is that our sufficient
conditions, that the integrand in I1 + I2 is nonnegative, does not capture the relevant features.
Nevertheless, we believe the approach is instructive as it illustrates the counter-oriented signs
one encounters when trying to obtain estimates in more generality for this model.

2.6.2 Existence and uniqueness

In this section, we discuss the linearisation (1.8) in Fourier space, namely

∂t û = −dq2
(
D

1−γ
0,t û − σD

−γ
0,t û + σD1−γ

0,t 1 · D−1
0,t û

)
+ σû. (2.67)

To our knowledge, this fractional ODE (for fixed q and σ , 0) has not been previously studied, so
we start with existence and uniqueness considerations before discussing the qualitative behaviour
of the solution. Notably, we only prove the existence and uniqueness of the mild solution to
(2.67). The classical solution is still an open problem.

In preparation, of global existence results, we give the following lemmas.
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Lemma 2.6.2. For fixed q, the function û(t, q) is the solution of (2.67) for t ∈ [0,T] with initial
condition û(0, q) = û0(q) if and only if û(·, q) ∈ C([0,T]) ∩ C1((0,T]) satisfies the following
integral equation

û(t, q) = û0(q)eσt − dq2(kγ ∗ û)(t, q) − σdq2
∫ t

0
eσ(t−s)kγ(s)

∫ s

0
û(τ, q)dτds, t ≥ 0. (2.68)

Proof. If û(·, q) ∈ C([0,T]) ∩ C1((0,T]), then we can rewrite (2.67) in the form

∂t (û + dq2D
−γ
0,t û) = σ(û + dq2D

−γ
0,t û) − σdq2D

1−γ
0,t 1 · D−1

0,t û. (2.69)

Then the second summand on the right-hand side is continuous in (0,T] and integrable on [0,T].
Therefore, we obtain the integral equation (2.68) using the variation-of-constants with initial
condition û(0, q) = û0(q), and using Lemma 2.3.4(2) yields the first summand on the right-hand
side of (2.68).

Conversely, the second and third summand on the right-hand side of (2.68) are continuous
on [0,T] and continuously differentiable in (0,T]. Then we can differentiate both side of (2.68)
with respect to t and obtain (2.67) for t > 0. For t → 0, the convolutions in (2.68) vanish and
yields û(0, q) = û0(q). □

Lemma 2.6.3. For σ < 0 and any 0 ≤ t0 ≤ t, the following estimate holds:

|σ |

∫ t

t0

eσ(t−s)sγ−1(s − t0)ds ≤ (t − t0)γ .

In particular, |σ |
∫ t

t0
eσ(t−s)sγ−1(s − t0)ds ∼ (t − t0)γ for t ≫ 1.

Proof. Denote f (t) := |σ |
∫ t

t0
e−σssγ−1(s−t0)ds and g(t) := e−σt (t−t0)γ. Then f (t0) = g(t0) = 0.

The derivatives with respect to t are given by

f ′(t) = |σ |e−σt tγ−1(t − t0), g′(t) = −σe−σt (t − t0)γ + γe−σt (t − t0)γ−1.

The second term in g′(t) is strictly positive and tγ−1 ≤ (t − t0)γ−1 for 0 ≤ t0 ≤ t. Hence
f ′(t) < g′(t) for 0 ≤ t0 ≤ t. Then we have f (t) ≤ g(t) for 0 ≤ t0 ≤ t which is equivalent to the
claimed estimate. Moreover, we have limt→∞ f (t)/g(t) = 1 by L’Hôpital’s rule, which gives the
claimed asymptotic approximation. □

Lemma 2.6.4. For σ > 0 and any 0 ≤ t0 ≤ t, there exists a unique T∗(t0) > t0 such that the
following estimate holds

|σ |

∫ t

t0

eσ(t−s)sγ−1(s − t0)ds ≤ (t − t0)γ, (2.70)

for t ∈ [t0,T∗(t0)], where t = T∗(t0) is the solution to the above equality.
Moreover, inf0≤t0≤T∗(t0)(T∗(t0) − t0) = T∗(0).
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Proof. We use the notations defined in the proof of Lemma 2.6.3. We have f (t0) = g(t0) = 0
and limt→∞ g(t) = 0 for σ > 0. Moreover, f ′(t0) = 0 and g′(t0) = +∞. Hence f (t) ≤ g(t) for
small t. We observe that f ′(t) > 0 for t > t0, whereas g′(t) becomes negative for t > t0 + γ/σ
and limt→∞ g(t) = 0. Therefore, there exists a unique point t∗ > t0 such that f (t∗) = g(t∗) and
f (t) < g(t) for t < t∗, which is same as the claimed upper bound T∗(t0).

We suppress the effect of eσt on f ′(t) and g′(t), that means we consider f̌ ′(t) := |σ |tγ−1(t−t0)
and ǧ′(t) := −σ(t − t0)γ + γ(t − t0)γ−1. We denote ρ := t − t0, then f̌ ′(t) = |σ |(ρ + t0)γ−1ρ and
ǧ′(t) := −σργ + γργ−1. We note that ǧ′(t) does not depend on t0 explicitly, whereas f̌ ′(t) does
and decreases for increasing t0. Therefore, the length of the interval t ∈ [t0,T∗(t0)] such that
(2.70) is satisfied becomes larger for increasing t0. This implies the length of interval [0,T∗(0)]
is the smallest for all t0 ≥ 0. □

In the following, we give the local existence and uniqueness theorem of the integral equation
(2.68) and prove by using Banach fixed point theorem. Recall that for σ = 0 the equation turns
into the subdiffusion equation for which global existence is known.

Theorem 2.6.5 (Local existence and uniqueness). For any fixed q and initial condition û(0, q) =
û0(q) there exists Tσ and for any T < Tσ a unique local solution û(·, q) ∈ C([0,T]) of (2.68),
where for σ < 0 we have Tσ = Tγ := (Γ(γ + 1)/(dq2(γ + 1)))1/γ, and for σ > 0 we have
Tσ = min{Tγ,T∗(0)} from Lemma 2.6.4.

Proof. We recall (2.68) and define a map K : C([0,T0]) → C([0,T0]) which is given by

(Kû)(t) = û0eσt − dq2(kγ ∗ û)(t) − σdq2
∫ t

0
eσ(t−s)kγ(s)

∫ s

0
û(τ)dτds,

For σ < 0, we have the estimate

|(Kû)(t) − (K v̂)(t)| ≤ |dq2(kγ ∗ (û − v̂))(t)| +
����σdq2

∫ t

0
eσ(t−s)kγ(s)

∫ s

0
(û − v̂)(τ)dτds

����
≤

dq2tγ

γΓ(γ)
sup

0≤s≤t
|û(s) − v̂(s)| + sup

0≤τ≤t
|û(τ) − v̂(τ)|

dq2

Γ(γ)
|σ |

∫ t

0
eσ(t−s)sγds (2.71)

≤
dq2(γ + 1)tγ

Γ(γ + 1)
sup

0≤s≤t
|û(s) − v̂(s)|, (2.72)

where Lemma 2.6.3 gives the estimate for the second summand in (2.71). Hence we have

∥Kû − K v̂∥C([0,T0]) ≤
dq2(γ + 1)
Γ(γ + 1)

Tγ
0 ∥û − v̂∥C([0,T0])

We choose T0 such that dq2(γ + 1)Tγ
0 /Γ(γ + 1) < 1, i.e., T0 < Tγ, so K is a contraction and,

being linear, it is then a self-map of any ball. Existence of a unique solution now follows from
the contraction principle.

For σ > 0 Lemma 2.6.4 provides T∗(0) such that the above estimates of K hold for T0 <

min{Tγ,T∗(0)} and the claim follows as before. □
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We note that for fixed γ and σ < 0, the upper bound of the existence Tσ → ∞ for |q | → 0
and does not depend on σ. However, Tσ → 0 for |q | → ∞. Therefore, we need the extendibility
of existence and uniqueness interval, and we have the following result.

Theorem 2.6.6 (Global existence and uniqueness). For fixed q and initial condition û(0, q) =
û0(q) there exists a unique solution û(·, q) ∈ C([0,∞)) of (2.68).

Proof. For σ = 0 it is clear from the subdiffusion equation. Otherwise, the previous theorem
gives the existence of a unique solution in C([0,T0]) for 0 < T0 < Tσ . We want to extend the
interval to t ∈ [T0,T1], T1 > T0 using that the integral equation (2.68) allows for the following
separation

û(t) = û0eσt − dq2(kγ ∗ û)(t) − σdq2
∫ t

0
eσ(t−s)kγ(s)

∫ s

0
û(τ)dτds

= û0eσt − dq2
∫ T0

0
kγ(t − s)û(s)ds − σdq2

∫ T0

0
eσ(t−s)kγ(s)

∫ s

0
û(τ)dτds (2.73)

− σdq2
∫ t

T0

eσ(t−s)kγ(s)
∫ T0

0
û(τ)dτds (2.74)

− dq2
∫ t

T0

kγ(t − s)û(s)ds − σdq2
∫ t

T0

eσ(t−s)kγ(s)
∫ s

T0

û(τ)dτds. (2.75)

We denote the right-hand side except (2.75) by ϕ0(t; T0) and note this is defined uniquely in terms
of the local solution from Theorem 2.6.5 (the idea is from [27, Eq. 3.2.24 & 3.2.25]). Then we
define a map K0 : C([T0,T1]) → C([T0,T1]), whose fixed points are the solutions of (2.68) by

(K0û)(t) = ϕ0(t; T0) − dq2
∫ t

T0

kγ(t − s)û(s)ds − σdq2
∫ t

T0

eσ(t−s)kγ(s)
∫ s

T0

û(τ)dτds. (2.76)

For σ < 0 we estimate analogous to (2.72) that

|(K0û)(t) − (K0v̂)(t)| ≤
dq2

γΓ(γ)
(tγ − Tγ

0 ) sup
T0≤s≤t

|û(s) − v̂(s)|

+ sup
T0≤τ≤t

|û(τ) − v̂(τ)|

����σdq2

Γ(γ)

���� ∫ t

T0

eσ(t−s)sγ−1(s − T0)ds

≤
dq2(γ + 1)
Γ(γ + 1)

(t − T0)
γ sup
T0≤s≤t

|û(s) − v̂(s)|,

where we have used Lemma 2.6.3 again and, tγ − Tγ
0 ≤ (t − T0)

γ for t ≥ T0 > 0. Therefore,

∥K0û − K0v̂∥C([T0,T1]) ≤
dq2(γ + 1)
Γ(γ + 1)

(T1 − T0)
γ∥û − v̂∥C([T0,T1]).

We choose T1 such that dq2(γ + 1)(T1 − T0)
γ/Γ(γ + 1) < 1, i.e., T1 − T0 < Tγ, the map

K0 is a contraction, which implies existence of a unique solution as before. Without loss of
generality, we can choose a fixed constant α ∈ (0, 1) so that T0 = αTγ < Tγ. Then we choose
T1 − T0 = αTγ < Tγ and thus T1 = 2αTγ. Iterating the above procedure gives the upper interval
bounds Tn = α(n + 1)Tγ. Since limn→∞ Tn = ∞ we have global existence and uniqueness.
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For σ > 0, by Lemma 2.6.4, T∗(0) ≤ T∗(T0) − T0 and the above estimates of K0 are valid for
T1 ≤ T∗(T0), and choosing T1 so that in addition T1 − T0 < Tγ renders K0 a contraction. Thus we
can choose T1 − T0 < min{Tγ,T∗(0)} and such a choice is T1 := 2βTσ where fixed β ∈ (0, 1) and
Tσ := min{Tγ,T∗(0)}. Upon iterating this procedure global existence follows as before. □

2.6.3 Dynamics of Fourier modes

In this section, we give the locally decaying properties of solution to (2.67).

Theorem 2.6.7. Let û(·, q) ∈ C1((0,T)), T > 0 be the solution to (2.67) with initial condition
û(0, q) = û0(q). For any fixed q and σ < 0, there exists tϵ > 0 such that |û(t, q)| < |û0(q)|eσt for
t ∈ (0, tϵ ).

Proof. For any fixed q, let us suppress the dependence of û on q for readibility. Set v(t) =
(ût − σû)(t), so v ∈ C((0,T)). Then we can rewrite (2.67) in the form of

v(t) = −dq2
(∫ t

0

(
kγ(t − s) − kγ(t)

)
v(s)ds + kγ(t)û(t)

)
. (2.77)

On the other hand, we can solve û(t) by variation-of-constants, namely

û(t) = û(0)eσt +

∫ t

0
eσ(t−s)v(s)ds.

Substitution into (2.77) gives

v(t) = F1(t) + F2(t),

F1(t) := −dq2
∫ t

0

(
kγ(t − s) − kγ(t) + kγ(t)eσ(t−s)

)
v(s)ds,

F2(t) := −dq2kγ(t)û(0)eσt .

Without loss of generality, let û(0) > 0. Hence F2(t) < 0 for all t > 0. Moreover, kγ(t − s) −
kγ(t) + kγ(t)eσ(t−s) > 0 for all 0 ≤ s ≤ t < ∞. We discuss the sign of v(t) for t ∈ (0, tϵ ), tϵ > 0
as follows:

(1) Assume v(t) > 0 for all t ∈ (0, tϵ ). Then F1(t) < 0 which leads to v(t) < 0. It is a
contradiction.

(2) Assume v(t) = 0 for all t ∈ (0, tϵ ). Then F1(t) = 0 which leads to v(t) < 0. It is also a
contradiction.

Hence the only possibility is v(t) < 0 for t ∈ (0, tϵ ) and Grönwall’s inequality gives the claimed
result. □

Theorem 2.6.7 shows that each Fourier mode decays exponentially at the onset of evolution
at least with the rate σ. This also implies ∥u(·, t)∥L2 decays exponentially. However, the decaying
rate for t > tϵ is unclear.
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We note that v(t) either changes to positive, or stays negative and tends to zero for t → ∞.
We can see it from the relation v(t) − F1(t) = F2(t). If v(t) stays negative, and does not tend to
zero or does not have limit, then the left-hand side does not tend to zero or does not have limit
either, which contradict the exponential decay on the right-hand side. The explicitly decaying
rate is unclear, but both of these two cases imply that the decay of û(t, q) becomes slower for
increasing t. It is consistent with the numerical computation in §2.6.5 where the Fourier mode
decays slower than |û0(q)|eσt for large t, cf. Fig. 2.14e.

2.6.4 Linear analysis

As mentioned, the Fourier-Laplace transform of (1.8) does not give a dispersion relation which
explicitly depends on the spectrum. In this section, we introduce an alternatively method to study
the linear behaviour of the solution. To simplify the notations, we denote U(x, t) as the solution
to (1.7). Set V = e

∫ t

0 r(U(x,s))ds and W = Ue−
∫ t

0 r(U(x,s))ds, which gives U = VW . Then (1.7) can
be transformed into the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩

Wt = d
(
Dα

0,tWxx +
2Vx

V
Dα

0,tWx +
Vxx

V
Dα

0,tW
)

Vt = r(VW)V
(2.78)

where α := 1 − γ. The homogeneous steady state is given by (W∗,V∗) = (u∗, 1) with u∗ , 0.
Moreover, u ≥ 0 leads to V > 0 and W ≥ 0. We consider the perturbation such that (W,V) =

(u∗ + ϵw, 1 + ϵv), then the linearisation of (2.78) in (u∗, 1) is given by⎧⎪⎪⎨⎪⎪⎩
wt = d

(
Dα

0,twxx + vxxD
α
0,tu∗

)
vt = r ′(u∗)w + r ′(u∗)u∗v

(2.79)

Notably, U = WV = u∗ + ϵ(w + u∗v) + O(ϵ2) implies that the perturbation u, i.e., the solution of
(1.8), can be expressed by u = w + u∗v + O(ϵ). We remark that since V(x, t) = e

∫ t

0 r(U(x,s))ds, the
initial condition V(x, 0) = 1. This leads to 1 = V(x, 0) = 1 + ϵv(x, 0) and thus v(x, 0) = 0, which
implies that the initial condition for perturbation v(x, t) is restricted to 0.

We aim to construct two systems such that (2.79) is uniformly bounded by these two systems
which are so-called lower and upper bound systems. The solutions of these two systems should
be easily handled.

In the rest of this section, we construct the following two systems

Lower bound:

{
¯
wt = dDα

0,t ¯
wxx

¯
vt = r ′(u∗) ¯

w + r ′(u∗)u∗¯
v

(2.80)

Upper bound:

{
w̄t = dDα

0,t w̄xx + Mt−η

v̄t = r ′(u∗)w̄ + r ′(u∗)u∗v̄
, η > 0 |M | > 0. (2.81)

and analyse their solutions. We still have an open problem, however, that is to prove (2.79) is
uniformly bounded by the above systems.
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Lower bound We first analyse the lower bound system (2.80). The Green’s function of the first
equation in (2.80) is given by (2.31), which can be represented in terms of the Wright function
(cf. (A.3)) as follows

¯
w = Φ(x, t) =

1
2
√

d
t−µW

(
−µ, 1 − µ;−

|x |
√

d
t−µ

)
,

where µ := (1−α)/2 ∈ (0, 1/2). Then the substitution into the second equation in (2.80) and the
variation-of-constants give

¯
v(x, t) = r ′(u∗)eσt

∫ t

0
e−σs
Φ(x, s)ds,

here the initial condition
¯
v(x, 0) = 0 as mentioned. Hence the perturbation

¯
u is given to the

leading order by

¯
u =

¯
w + u∗¯

v = Φ(x, t) + σeσt

∫ t

0
e−σs
Φ(x, s)ds.

Lemma 2.6.8. If σ < 0, then
¯
u ∼

µ

2σ
√
dΓ(1−µ)

t−µ−1 as t → ∞.

Proof. First, we assume that limt→∞ e−σt

¯
u = ∞ and introduce an exponent β > 0. Then we

compute the following limit using L’Hôpital’s rule,

lim
t→∞

¯
u

t−β
= lim

t→∞

e−σt

¯
u

e−σt t−β
= lim

t→∞

−σe−σt

¯
u + e−σt∂t ¯

u
−σe−σt t−β − βe−σt t−β−1 = lim

t→∞

∂tΦ

−σt−β − βt−β−1

= lim
t→∞

−µ

2
√
d

t−µ−1W1 +
|x |µ
2d t−2µ−1W2

−σt−β − βt−β−1 = lim
t→∞

−µ

2
√
d
W1 +

|x |µ
2d t−µW2

−σ − (µ + 1)t−1

=
µ

2σ
√

dΓ(1 − µ)
,

here we choose β = µ + 1, and denote Wj := W

(
−µ, 1 − jµ; −|x |t−µ

√
d

)
, j ∈ N, and see

Appendix A.3 for the derivative ∂tΦ. The above limit is consistent with the assumption and
implies the claimed result.

Next, we assume that limt→∞ e−σt

¯
u < ∞, thus

¯
u is decreasing to zero exponentially. Using

L’Hôpital’s rule twice and properties of the derivatives of Φ (cf. Appendix A.3), we obtain the
following limit

lim
t→∞

¯
u

t−β
= lim

t→∞

∂t ¯
u

−βt−β−1 = lim
t→∞

e−σt∂t ¯
u

−βe−σt t−β−1

= lim
t→∞

−σe−σt∂t ¯
u + e−σt∂2

t ¯
u

βσe−σt t−β−1 + β(β + 1)e−σt t−β−2 = lim
t→∞

∂2
t Φ

βσt−β−1 + β(β + 1)t−β−2

= lim
t→∞

µ(µ+1)
2
√
d

t−µ−2W1 +
|x |(−3µ2−µ)

2d t−2µ−2W2 +
|x |2µ2

2d3/2 t−3µ−2W3

βσt−β−1 + β(β + 1)t−β−2

= lim
t→∞

µ(µ+1)
2
√
d

W1 +
|x |(−3µ2−µ)

2d t−µW2 +
|x |2µ2

2d3/2 t−2µW3

(µ + 1)σ + (µ + 1)(µ + 2)t−1

=
µ

2σ
√

dΓ(1 − µ)
,
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here we choose β = µ + 1. This result implies that
¯
u is algebraically decaying and thus

limt→∞ e−σt

¯
u = ∞, which contradicts the assumption. □

We claim that
¯
u grows exponentially in t for σ > 0. The derivative d

dt

∫ t

0 e−σsΦ(x, s)ds =
e−σtΦ(x, t) > 0 due to the positivity of Φ, cf. §2.3.2. Hence

∫ t

0 e−σsΦ(x, s)ds is increasing in t
and it leads to the claimed result.

Upper bound We then analyse the upper bound system (2.81) with the initial condition
w̄(x, 0) = δ(x) where δ(x) is the Dirac delta distribution. Assume the solution has the form
w̄(x, t) = Φ(x, t) + c(t). The substitution gives

Φt + c′ = dDα
0,tΦxx + Mt−η ⇒ c(t) = c(0) +

M
1 − η

t1−η .

Since δ(x) = w̄(x, 0) = Φ(x, 0) + c(0) = δ(x) + c(0), it leads to c(0) = 0. Hence

w̄ = Φ(x, t) + At1−η,

here A := M
1−η . The solution to the second equation in (2.81) is given by

v̄(x, t) = r ′(u∗)eσt

∫ t

0
e−σsw̄(x, s)ds,

with initial condition v̄(x, 0) ≡ 0. Hence

ū = w̄ + u∗v̄

= Φ(x, t) + At1−η + σeσt

∫ t

0
e−σs
Φ(x, s)ds + Aσeσt

∫ t

0
e−σss1−ηds, η ∈ (0, 1).

Lemma 2.6.9. If σ < 0 and η ∈ (0, 1), then ū ∼ −M
σ t−η as t → ∞.

Proof. First, we assume limt→∞ e−σt ū = ∞ and introduce the exponent β > 0, then we compute
the following limit using L’Hôpital’s rule,

lim
t→∞

ū
t−β
= lim

t→∞

e−σt ū
e−σt t−β

= lim
t→∞

−σe−σt ū + e−σt∂t ū
−σe−σt t−β − βe−σt t−β−1 = lim

t→∞

∂tΦ + Mt−η

−σt−β − βt−β−1

= lim
t→∞

−µ

2
√
d

t−µ−1W1 +
|x |µ
2d t−2µ−1W2 + Mt−η

−σt−β − βt−β−1

= lim
t→∞

−µ

2
√
d

t−µ−1+ηW1 +
|x |µ
2d t−2µ−1+ηW2 + M

−σ − ηt−1

= −
M
σ
,

here we choose β = η, and note that − jµ − 1 + η < 0, j = 1, 2 for η ∈ (0, 1). The above limit
implies the claimed result.
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Next, we assume limt→∞ e−σt ū < ∞, so ū decreases to zero exponentially. Using L’Hôpital’s
rule twice and properties of the derivatives ofΦ (cf. Appendix A.3), we then obtain the following
limit

lim
t→∞

ū
t−β
= lim

t→∞

∂t ū
−βt−β−1 = lim

t→∞

e−σt∂t ū
−βe−σt t−β−1

= lim
t→∞

−σe−σt∂t ū + e−σt∂2
t ū

βσe−σt t−β−1 + β(β + 1)e−σt t−β−2 = lim
t→∞

∂2
t Φ − Mηt−η−1

βσt−β−1 + β(β + 1)t−β−2

= lim
t→∞

µ(µ+1)
2
√
d

t−µ−2W1 +
|x |(−3µ2−µ)

2d t−2µ−2W2 +
|x |2µ2

2d3/2 t−3µ−2W3 − Mηt−η−1

βσt−β−1 + β(β + 1)t−β−2

= lim
t→∞

µ(µ+1)
2
√
d

t−µ−1+ηW1 +
|x |(−3µ2−µ)

2d t−2µ−1+ηW2 +
|x |2µ2

2d3/2 t−3µ−1+ηW3 − Mη

ησ + η(η + 1)t−1

= −
M
σ
,

here we choose β = η and −3µ− 1+ η < 0 for η ∈ (0, 1). Then we obtain ū ∼ −M
σ t−η as t → ∞.

This implies that limt→∞ e−σt ū = ∞ which contradicts the assumption. □

We claim that ū grows exponentially for σ > 0, t > 0. Since d
dt

∫ t

0 e−σsΦ(x, s)ds = e−σtΦ >

0 and d
dt

∫ t

0 e−σss1−ηds = e−σt t1−η > 0, it implies that
∫ t

0 e−σsΦ(x, s)ds and
∫ t

0 e−σss1−ηds
increase in time. Hence ū is exponential growth for σ > 0.

2.6.5 Numerical solution

In this section, we show the numerical computation of the solution to (2.67). We introduce the
Grünwald-Letnikov definition

D
α
0,t f (t) = lim

h→0
h−α

m∑
n=0

(−1)n
(
α

n

)
f (t − nh),

where t = mh and

(
α

n

)
=

Γ(α+1)
Γ(n+1)Γ(α−n+1) . This definition represents integral for α < 0 and

derivative for α > 0. The Grünwald-Letnikov integral is equivalent to fractional integral
(2.23) [49, Eq. 2.40]; the Grünwald-Letnikov derivative is equivalent to Riemann-Liouville
derivative (2.25) for f ∈ AC([0,T]), T > 0 [49, Eq. 2.134].

We transform (2.67) into difference scheme as follows. We take the points t0, t1, . . . , tm such
that 0 = t0 < t1 < · · · < tn < · · · < tm = t and tn − tn−1 = h, Then we can rewrite (2.67) as a
difference equation in the following form

u(tm) − u(tm − h)
h

= −dq2

(
h−(1−γ)

m∑
n=0

(−1)n
(
1 − γ

n

)
u(tm − nh)

− σhγ
m∑
n=0

(−1)n
(
−γ

n

)
u(tm − nh) + σ

tγ−1
m

Γ(γ)
h

m∑
n=0

u(tm − nh)

)
+ σu(tm).



2.6. Subdiffusion with nonlinear creation and annihilation 55

0 100 200 300 400 500 600 700

step

-7

-6

-5

-4

-3

-2

-1

0

lo
g
(s

o
lu

ti
o
n
)

(a)

0 20 40 60 80 100

step

-2

-1.5

-1

-0.5

0

lo
g
(s

o
lu

ti
o
n
)

(b)

600 620 640 660 680 700

step

-7

-6.8

-6.6

-6.4

-6.2

-6

lo
g
(s

o
lu

ti
o
n
)

(c)

0 20 40 60 80 100

step

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g
(s

o
lu

ti
o
n
)

(d)

0 50 100 150 200

step

0

1

2

3

4

lo
g
(s

o
lu

ti
o
n
)

(e)

Figure 2.14: Comparison of the logarithm of solutions. Red dotted lines: solutions to (2.67); green:
û(0) exp(σt); blue: û(0) exp((σ − dq2)t). Setting q = 1, d = 1, h = 0.01, γ = 0.5, û(0) = 1. (a) σ = −1.
(b) The magnification of (a) shows û(t) becomes larger than û(0) exp((σ − dq2)t) after a certain time. (c)
The magnification of (a) shows û(t) becomes larger than û(0) exp(σt). (d) σ = 0. (e) σ = 2.

Rewriting the above equation gives the following iteration formulae

u(t1) = A1u(t0),

u(tm) = Amu(tm−1) +

m∑
n=2

Bm,nu(tm−n), m = 2, 3, . . . ,

where

Am =
h−1 − dq2

(
−(1 − γ)h−(1−γ) − γσhγ + σ (mh)γ−1

Γ(γ) h
)

h−1 + dq2
(
h−(1−γ) − σhγ + σ (mh)γ−1

Γ(γ) h
)
− σ

, m = 1, 2, . . . ,

Bm,n =
−dq2

(
h−(1−γ)Cn(1 − γ) − σhγCn(−γ) + σ

(mh)γ−1

Γ(γ) h
)

h−1 + dq2
(
h−(1−γ) − σhγ + σ (mh)γ−1

Γ(γ) h
)
− σ

, m = 2, 3, . . . ,

Cn(1 − γ) = (−1)n
(
1 − γ

n

)
, Cn(−γ) = (−1)n

(
−γ

n

)
.

We solve the above solution numerically and show the logarithm of solutions in Fig. 2.14.

Forσ < 0, the solution is decaying in time, cf. Fig. 2.14a. We note that û(t) decays faster than
û(0) exp((σ − dq2)t) which is the Fourier mode to the linear reaction diffusion equation for short
time. However, û(t) decays slower than û(0) exp((σ − dq2)t) after a certain time, cf. Fig. 2.14b,
and even slower than the exponential function û(0) exp(σt) for increasing t, cf. Fig. 2.14c.
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For σ = 0, the equation (1.8) becomes subdiffusion equation, and the numerical result shows
that the Fourier mode to (1.8) decays exponentially for short time then decays slower for large
time, cf. Fig. 2.14d, which is consistent with (2.29).

For σ > 0, the Fourier mode is decaying at the onset, then exponentially growing in time, cf.
Fig. 2.14e. Moreover, it is even faster than û(0) exp((σ − dq2)t) for large time, and the growing
rate is similar to that of û(0) exp(σt).



Chapter 3

Reaction-diffusion-advection systems

3.1 Introduction

In this chapter, we study the generic form of the planar reaction-diffusion-advection systems
(1.9). Our main results with more details may be summarised as follows. Here the parameters
are µ = (α, β, κ̃) where α = λM α̌ for certain λM , 0 and κ̃ = κ − kc is the deviation of the
stripes’ nonlinear wavenumber from kc, i.e., the stripes’ spatial period is 2π/κ. Lastly, ℓ̃ is the
deviation of the domain’s spatial extent from a symmetric domain along the stripe. Throughout
we consider |µ| ≪ 1, and consider stripes Us(x; µ) that are constant in y with amplitude parameter
A = ∥Ûs(kc; µ)∥ the norm of the first Fourier mode.

Existence of stripes The existence of striped solutions Us(x; µ) to (1.9) with small amplitude
A near the onset of the Turing instability is equivalent to solving an algebraic equation

α + ρββ
2 + ρκ̃ κ̃

2 + ρnl A2 = 0,

where ρβ, ρκ̃ are determined by the linearisation in u = 0, and ρnl involves the nonlinear terms.
We have ρβ > 0, ρκ̃ < 0 so that the bifurcation loci form a hyperbolic paraboloid, and in
the supercritical case ρnl < 0 the corresponding amplitudes A follow a family of supercritical
pitchfork bifurcations, cf. Fig. 3.1 (dashed curves).

Zigzag instability We determine the leading order curvature of the spectrum for modes parallel
to the stripes as

kcρκ̃ κ̃ + ρα̌α + ρβββ
2,

which means zigzag instability for a positive value. For ρα̌ = 0 the leading order zigzag boundary
is independent of α as in the isotropic case of Swift-Hohenberg equation mentioned in §1.4. It
turns out that ρα̌ = a + b, where a = 0 if M = Id and b = 0 if Q = 0, which highlights the
impact of non-trivial M and the quadratic term. The sign of ρββ determines whether β has a
stabilising or destabilising effect, and we determine this for ‘small’ Q. It turns out that if the first
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(a) (b)

Figure 3.1: We plot sketches of the leading order existence and stability boundaries near the Turing
bifurcation point at the origin in (a). Stripes exist in the complement of the dark grey regions. Hatched
region: Eckhaus unstable. Light grey region: zigzag unstable. (a) β = 0, M = Id, Q = 0, (b) sample
for β , 0, M , Id, Q , 0. Note in (b) the existence and Eckhaus boundaries are shifted downwards, the
zigzag boundary is tilted and the attachment point to the existence shifted.

component is the inhibitor, a1 < 0, then ρββ < 0. However, the different combinations of signs
allow to move and tilt the zigzag boundary, cf. Fig. 3.5 (dotted dashed curves).

Eckhaus instability To leading order the curvature of the spectrum for modes orthogonal to
the stripe has the sign of

−(α̃ + 3ρκ̃ κ̃2),

where α̃ = α + ρββ2 is the deviation from the bifurcation loci. Hence, in terms of α̃ the leading
order curvature is independent of the advection β, and just according to the well-known Eckhaus
boundary as a function of κ̃, cf. Fig. 3.1 (solid curves). Thus, in contrast to the zigzag instability,
relative to the bifurcation loci there is no leading order impact of the advection on this large
wavelength stability. Nevertheless, for fixed unfolding parameter α the interval of stable κ̃ is
larger, i.e., stripes are more resilient to stretching/compressing compared to the isotropic case.

As mentioned in §1.4, we study the stability on lattices, in particular on (quasi-)square and
(quasi-)hexagonal lattices. We assume the scaling relation

(A, α, β, κ̃, ℓ̃) = (εA′, ε2α′, εβ′, εκ̃′, εℓ̃
′
), (3.1)

with a scaling parameter ε > 0, as this greatly simplifies the discussion. This scaling is
homogeneous for µ with respect to the relevant terms in the expansion of stripes.

As is well known from the isotropic case, the quadratic terms enter at lower order into
stability on the hexagonal lattice and thus should be small in order to discuss changes of stability.
A convenient, though not necessary, implementation of this is the following uniform smallness
hypothesis.

Hypothesis 3.1.1. Q[·, ·] = εQ′[·, ·].
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Notably, in the amplitude/modulation equation approach this assumption is required a priori,
while in our approach it enters only a posteriori in order to obtain non-trivial stability boundaries.

It turns out that certain quasi-hexagonal modes are more unstable than others, and therefore
the resulting stability boundaries are briefly illustrated next. In order to build the foundation for
this case, in the body of this chapter we begin by discussing quasi-square modes in §3.5.3 and
exact hexagonal modes in §3.5.4.

Quasi-hexagonal stability boundaries. We consider periodic boundary conditions on the
rectangular domains x ∈ Ωqh := [0, 4π/κ] × [0, 4π/(

√
3ℓ)], κ := kc + κ̃, ℓ := kc + ℓ̃, ℓ̃ , κ̃. We

prove that the ratio κ̃/ℓ̃ = −3 yields the most unstable modes near onset – it is the scale ratio on
which the hexagonal modes of the homogeneous steady state are critical. For generic quadratic
term, in the isotropic case β = 0 the stripes are unstable near the onset of Turing instability
(Fig. 3.2a & 3.3a). In the anisotropic case, β , 0, any advection strength stabilises the stripes
with wavenumbers close to the Turing critical wavenumber (Fig. 3.3b), but this ‘small’ stability
region is not connected to the stable region of larger amplitude stripes. However, the size of
the small stability region increases with advection strength and eventually connects to that of
larger amplitude stripes (Fig. 3.2c & 3.3d). Notably, the thresholds are of the form βep = cep | κ̃ |,
βtp = ctp |q | with explicit constants cep, ctp > 0, cf. Fig. 3.2d and 3.3f, respectively. This ‘opening’
of the stability region shows how under increasing advection strength the isotropic 2D stability
region transitions to be like the 1D region augmented by the zigzag boundary.

The quasi-hexagonal instability compares with the Eckhaus instability as follows. Recall that
the Eckhaus instability is a large-wavelength instability orthogonal to the stripe and the dominant
instability mechanism for wavetrains in 1D; we disregard the leading order zigzag instability
region {κ̃ < 0}. In the presence of a generic quadratic term, the quasi-hexagonal instability is
dominant near onset in the isotropic case (Fig. 3.3a) while the Eckhaus instability is dominant
near onset in the anisotropic case (Fig. 3.3b to 3.3e). In particular, the Eckhaus instability is
completely dominant for relatively strong advection β > βex = cex |q | for an explicit constant
cex > 0 (Fig. 3.3e).

In our analysis, we consider the leading order bifurcation and stability boundaries of stripes
with the scaling relation (3.1). This leads to the reflection symmetric bifurcation and stability
boundaries, cf. Fig. 3.3. Relaxing the scaling relation and including the higher order terms will
generically break such symmetry as shown for the zigzag stability boundary in Fig. 3.1b. Indeed,
we observe asymmetry of the stability diagrams in the numerical computations of Klausmeier
model in §3.6.2.

This chapter is organised as follows: In §3.2 we discuss linear stability of the homogeneous
state near the Turing instability as a preparation for the analysis of stripes. The existence of
stripes is studied in §3.3, and in §3.4 we study the large-wavelength in/stabilities, i.e., zigzag and
Eckhaus in/stabilities. The in/stabilities against lattice modes are discussed in §3.5. In §3.6, we
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(a) 0 ≤ |β| < βep (b) |β| = βep

(c) |β| > βep

increasing

(d)

Figure 3.2: In (a)–(c) we plot sketches of the quasi-hexagonal stability regions in the (q, α)-plane for
fixed κ̃ , 0 and θ ∈ (0, 1], the quadratic term q = q(Q) = O(ε) measures the effect of the quadratic
nonlinearity. Stripes exist in the complement of the dark grey regions; light grey: quasi-hex-unstable;
white: quasi-hex-stable. Stripe bifurcation (3.6) (dashed), quasi-hexagonal boundaries (3.50) (solid). In
(d) we sketch the half width of the stable window shown in (c), cf. (3.57). The curve intersects with β-axis
at βep linearly increasing with | κ̃ |. The stripes are quasi-hex-stable below the curve for any α. It shows
that the stable window ‘opens’ later for larger | κ̃ | and ‘opens’ wider for larger |β|.

illustrate these results by a concrete example of the form (1.9) and in §3.6.2, we study the large
wavelength instabilities numerically for the extended Klausmeier model that was used in [59].

3.2 Turing instability

The linearisation of (1.9) in uhom = 0 is

L := D∆ + L + α̌M + βB∂x,

whose spectrum is most easily studied via the Fourier transform

L̂(k, ℓ) = −(k2 + ℓ2)D + L + α̌M + ikβB,

with Fourier-wavenumbers k in x-direction and ℓ in y-direction. It is well known, e.g., [54], that
in the common function spaces such as L2(R2) the spectrum Σ(L) of L equals that of L̂ and is
the set of roots of the (linear) dispersion relation

d(λ, k, ℓ) = det(L̂(k, ℓ) − λId). (3.2)

Let Skc ⊂ R
2 be the circle of radius kc.
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(a) β = 0 (b) |β | < βtp (c) |β| = βtp

(d) βtp < |β | < βex (e) |β | ≥ βex

increasing

(f)

Figure 3.3: In (a)–(e) we plot sketches of the quasi-hexagonal stability regions in the (κ̃, α)-plane for fixed
quadratic coefficient q , 0, q = q(Q) = O(ε) and fixed θ ∈ (0, 1]. Stripes exist in the complement of the
dark grey regions. Light grey: quasi-hex-unstable; hatched regions: Eckhaus-unstable; zigzag-unstable
stripes occurs for κ̃ < 0. Stripe bifurcation (3.6) (dashed), Eckhaus boundaries (3.30) (dotted), quasi-
hexagonal boundaries (3.50) (solid). In (f) we sketch the half width of the stable window shown in (d)
and (e), cf. (3.60). The curve intersects with β-axis at βtp linearly increasing with |q |. The stripes are
quasi-hex-stable below the curve for any α. It shows that the stable window ‘opens’ later for larger |q | and
‘opens’ wider for larger |β |.

Definition 3.2.1. We say that α̌ = β = 0 is a (non-degenerate) Turing instability point for uhom

in (1.9) with wavelength kc if

(1) L has strictly stable spectrum Σ(L) ⊂ {λ ∈ C : Re(λ) < 0},

(2) The spectrum of L is critical for wavevectors (k, ℓ) of length kc > 0:

d(λ, k, ℓ) = 0 & Re(λ) ≥ 0 ⇔ λ = 0, (k, ℓ) ∈ Skc

which in particular means Σ(L) ∩ {z ∈ C : Re(z) ≥ 0} = {0},

(3) ∂λd , 0 at λ = 0 and (kc, ℓc) ∈ Skc . We denote the unique continuation of these solutions
to (3.2) by λc(k, ℓ; α̌, β), i.e., (k, ℓ) in a neighbourhood of Skc .

Writing L =

(
a1 a2

a3 a4

)
, condition (1) implies negative trace of L, a1 + a4 < 0, and positive

determinant a1a4 > a2a3, and (3) implies the well known condition d1a4 + d2a1 > 0, which
together imply a2a3 < a1a4 < 0, e.g., [41].

As a first step to understand the impact of advection, the next lemma shows that, for this
two-component case, the unfolding by β is only to quadratic order.
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Lemma 3.2.2. For the critical eigenvalues near a Turing instability of (1.9) as in Definition
3.2.1 it holds for any (kc, ℓc) ∈ Skc that

λc(kc, ℓc; β) = ikc(λβ + c)β + k2
cλβββ

2 + O(|kcβ |
3),

where λβ =
a4−k2

cd2
a1+a4−k2

c (d1+d2)
, λββ =

(a1−k2
cd1)(a4−k2

cd2)

(a1+a4−k2
c (d1+d2))3

> 0. In particular, the real part grows
fastest for 1D-modes with ℓc = 0 and remains zero for transverse modes with kc = 0.

Proof. This follows immediately from the next lemma upon setting δ = kcβ, b1 = −(k2
c +ℓ

2
c )d1+

a1, b2 = a2, b3 = a3, b4 = −(k2
c + ℓ

2
c )d2 + a4 and shifting by ikcβc. The last statement of the

lemma is simply a consequence of the fact that the largest value real part of λc is attained at the
largest value of k2

c , which occurs at ℓc = 0 since k2
c + ℓ

2
c = k2

c . □

Remark 3.2.3. The lemma in fact proves the plots in Figure 2 of [59] near onset. It is well
known that for a two-component system k2

c =
d1a4+d2a1

2d1d2
and a2a3 = (a1 − k2

c d1)(a4 − k2
c d2).

Lemma 3.2.4. For a matrix

(
b1 + iδ b2

b3 b4

)
with b1 , 0 and simple zero eigenvalue, the expansion

of that eigenvalue reads
λ(δ) = iλ |δ + λ | |δ2 + O(|δ |3),

where λ | = b4
b1+b4

, λ | | = b1b4
(b1+b4)3

.

Proof. Straightforward implicit differentiation, expansion of characteristic polynomial and use
of assumptions, which in particular imply (b1 + b4)b1 , 0. □

Note that b2 = 0 or b3 = 0 is not possible due to the assumption b1 , 0 and b1b4 = b2b3.

Remark 3.2.5. For the matrix

(
b1 b2

b3 b4

)
in Lemma 3.2.4, i.e., δ = 0, we can choose the kernel

eigenvector E0 and the adjoint kernel eigenvector E∗
0 with ⟨E0, E0⟩ = 1 and ⟨E0, E∗

0 ⟩ = 1 as

E0 = (b2,−b1)
T/c0, E∗

0 = (b3,−b1)
T/c∗0,

with c0 :=
√

b2
2 + b2

1, c∗0 := (b2b3 + b2
1)/c0. Here c∗0 , 0 since b2

1 + b2b3 = b2
1 + b1b4 =

b1(b1 + b4) , 0.

In contrast to β, the change of real parts of the critical eigenvalue through α̌, with matrix
M = (mi j)1≤i, j≤2, is linear with coefficient

λM := −
∂α̌d
∂λd

����
α̌=0,λ=0

=
m11(a4 − k2

c d2) − m12a3 − m21a2 + m22(a1 − k2
c d1)

a1 + a4 − k2
c(d1 + d2)

, 0,
(3.3)

where we assume λM , 0 throughout this chapter. Notably, λM = 1 if M = Id in which case α̌
just rigidly moves the real part of the spectrum.



3.2. Turing instability 63

wavenumber

w
av
en
u
m
b
er

0

Figure 3.4: Based on the example (3.61) below, we illustrate the locations of the critical spectrum of
homogeneous state, i.e., Re(λ(k, ℓ;α, β)) = 0, on the (k, ℓ)-plane for ‘small’ fixed β = 0.2, and Re(λ) > 0
inside each horn-shaped region. The unfolding parameter α = 12.24α̌. Grey curve: wavevectors
(kc, ℓc) ∈ Skc with radius kc = 1; grey vertical line: k = 1/2; blue: α̌ = −3.6 × 10−4 (α ≈ −0.00441);
green: α̌ = −9.15 × 10−5 (α ≈ −0.00112); red: α̌ = α = 0. These contours are reflection symmetric with
respect to the axes.

In the following we therefore change parameters and use the effective impact on the real part
given by

α := λM α̌

as the new parameter so that

λc(kc, ℓc;α, β) = α + i(kc(λβ + c) + aMλMβα)β + k2
cλβββ

2

+ O(aMα
2 + |kcβ|

3),
(3.4)

with λMβ := kc
m22−λM−(2λM−m11−m22)λβ

λM (a1+a4−k2
c (d1+d2))

, and we emphasise the special case M = Id through the
factor aM , where aM = 0 if M = Id and aM = 1 otherwise.

We illustrate the region of Re(λ) ≥ 0 in the wavevector space (k, ℓ) in Fig. 3.4 based on
the example (3.61) below. For ‘small’ fixed β = 0.2, the Fourier modes with (the leading
order) wavevectors (±kc, 0) first become unstable for α > −k2

cλβββ
2 ≈ −0.00448, where α =

12.24α̌, thus the stripes with the wavelength 2π/kc may bifurcate from the homogeneous steady
state. Then the modes with (the leading order) wavevectors (±kc/2,±

√
3kc/2) touch zero at

α = −k2
cλβββ

2/4 ≈ −0.00112 so that the hexagons may bifurcate. Lastly, the modes with
wavevectors (0,±kc) touch zero plane for α = 0 and thus squares may bifurcate.

Here we highlight an a priori consequence for the L2(R2)-stability of striped solutions Us

with wavenumber κ = kc + κ̃ that are oriented orthogonal to the x-direction, i.e., ∂yUs ≡ 0. We
assume (and prove in the next section) the existence of a curve of such striped solutions Us(x; τ)
parametrised by τ ∈ [0, τ0) for some τ0 > 0, with Us(x; 0) = 0, and corresponding parameter
curve µ(τ) = (α, β, κ̃)(τ) with β(0) , 0, |µ(0)| ≪ 1, and velocity parameter c(τ).
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Corollary 3.2.6. For 0 < τ ≪ 1 and β(0) = 0 the spectral stability in L2(R2) of Us is entirely
determined by large-wavelength modes, i.e., if Us is zigzag and Eckhaus stable then it is spectrally
stable in L2(R2).

In particular, a family with constant κ̃ = 0, i.e., stripes with wavenumber kc, bifurcates stably,
if it is zigzag-stable at onset.

Proof. Since β(0) , 0, by Lemma 3.2.2, see also the Squire-theorem [59, Theorem 2], the
spectrum ofUs(x; 0) = uhom with parameters µ(0), c(0) is critical only for κ̃, ℓ ≈ 0. More precisely,
for all sufficiently small ϵ > 0 there is δ > 0 such that Re(λc(kc + κ̃, ℓ;α(0), β(0))) < −δ for all
κ̃, ℓ with | κ̃ |, |ℓ | > ε. It suffices to show that the same holds for the spectrum of the linearisation
Lst of (1.9) in Us for any sufficienly small τ.

Via Floquet-Bloch decomposition, the spectrum of Lst can be encoded in a complex analytic
dispersion relation dst(λ, γ, ℓ), γ ∈ [0, 2π), e.g., [10,40,50], and §3.4. Since Lst(0) = L roots of
dst converge locally uniformly inC to roots of d for k = 2πm+γ with suitable m ∈ Z. Hence, any
spectrum that is bounded away from iR for uhom will be bounded away from iR for all sufficiently
small τ. □

Remark 3.2.7. We highlight that the homogeneous steady state which is unstable against large-
wavelength modes ei(κx+ℓy), ℓ ≈ 0 evolves into zigzag-unstable stripes with wavelength 2π/κ,
since the spectrum of Lst inherits the instability from the unstable spectrum of L due to the
continuation. However, the stable homogeneous state does not necessarily evolve into zigzag-
stable stripes, since the spectrum of Lst does not need to converge to that of L in C1-norm by
approaching the bifurcation.

The above statements are verified by the concrete example (3.61). Fig. 3.4 shows that the
spectrum Re(λc(kc + κ̃, ℓ)) > 0 for κ̃ < 0, ℓ ≈ 0 and Re(λc(kc + κ̃, ℓ)) < 0 for κ̃ > 0 and all
ℓ. However, these produce the zigzag-unstable stripes for both κ̃ < 0 and ‘small’ positive κ̃, cf.
Fig. 3.13b. Notably, we use different values of β in Fig. 3.4 and 3.13b, however, the qualitative
shape of the zigzag stability boundary near onset would not change by varying non-zero β,
cf. (3.29).

3.3 Bifurcation of stripes

Stripes are travelling waves solutions of (1.9) that are constant in y and periodic in x for any
t. In order to determine the bifurcation of stripes it thus suffices to consider the 1D case
x = x ∈ [0, 2π/κ] with periodic boundary conditions and wavenumber κ. The definition of a
Turing instability point implies that L restricted to 1D possesses a kernel at α = β = 0 on spaces
of 2π/kc-periodic functions and upon unfolding also for nearby periods. Let us therefore rescale
space and consider periodic boundary conditions on [0, 2π]. This modifies the linear part (1.9)
to

Lµ := κ2D∂2
x + L + α̌M + βκB∂x
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with the off-critical parameter κ̃ in κ = kc+ κ̃ that allows to detects stripes with nearby wavenum-
ber. We recall the parameter vector µ = (α, β, κ̃). By Lemma 3.2.2, (3.4), and straightforward
generalisation to include κ̃, the continuation of the zero eigenvalue of Lµ has an expansion

λµ = α + ρββ
2 + ρκ̃ κ̃

2 + i(γβ + γκ̃β κ̃ + aMλMβα)β

+ aMλM κ̃ακ̃ + O(aMα
2 + | κ̃ |3 + |β |3),

(3.5)

where again aM = 0 if M = Id and aM = 1 otherwise. The coefficients are

ρβ = k2
cλββ > 0, γβ = kc(λβ + c),

as in Lemma 3.2.2 and with γκ̃β = λκ̃β + c, the dispersion relation d(λ, k; µ) = 0 as well as
∂kλc(kc; 0) = 0 yields

λκ̃β = i
∂kλd · ∂βλ + ∂

2
k

d

∂λd

�����
k=kc,µ=0,λ=0

∈ R,

λM κ̃ = −
λM∂kλd + ∂2

k
d

λM∂λd

�����
k=kc,µ=0,λ=0

∈ R,

ρκ̃ = −
∂2
k

d

2∂λd

�����
k=kc,λ=0

< 0

with the last sign due to d1a4 + d2a1 > 0, a1 + a4 < 0 and

ρκ̃ = −
d1a4 + d2a1 − 6d1d2k2

c

a1 + a4 − (d1 + d2)k2
c
=

2(d1a4 + d2a1)

a1 + a4 − (d1 + d2)k2
c
.

Vanishing real part Re(λµ) = 0 thus occurs to leading order on a hyperbolic paraboloid

α = B(κ̃, β) := −(ρκ̃ κ̃
2 + ρββ

2) (3.6)

in µ-space. Since the eigenvalue is stable (unstable) for α < B(κ̃, β) (α > B(κ̃, β)), this
constitutes the bifurcation surface at leading order.

The next theorem specifies the bifurcation and expansion of the stripe solutions near µ = 0,
where our main point is the effect of β and its interaction with α, κ̃. Rather than expanding with
abstract coefficients, we provide explicit formulae evaluated at µ = 0 in terms of the following
quantities.

Q0 := −2L−1Q[E0, E0], Q2 := −2(−4k2
c D + L)−1Q[E0, E0],

q0 := ⟨Q[E0,Q0], E∗
0 ⟩, q2 := ⟨Q[E0,Q2], E∗

0 ⟩,

k0 := ⟨K[E0, E0, E0], E∗
0 ⟩, ρnl := 3k0 + 2q0 + q2,

wAα̌ := (−k2
c D + L)−1(⟨ME0, E∗

0 ⟩ − M)E0,

wAβ := kc(−k2
c D + L)−1(⟨BE0, E∗

0 ⟩ − B)E0,

wAκ̃ := 2kc(−k2
c D + L)−1DE0,

wAββ := 2kc(−k2
c D + L)−1(BwAβ − ⟨BwAβ, E∗

0 ⟩E0),

eµ(x) := (E0 + α̌wAα̌ + iβwAβ + κ̃wAκ̃ + β
2wAββ)eix .

(3.7)
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Here −k2
c D+ L has a one-dimensional generalised kernel spanned by E0, and thus has an inverse

from its range to the kernel of the projection ⟨·, E∗
0 ⟩E0. We note that the evaluation at µ = 0

in the following theorem gives the velocity parameter c = −λβ and at this value of c we have
⟨BE0, E∗

0 ⟩ = 0.

Theorem 3.3.1 (Stripe existence). Up to spatial translation, non-trivial stripe solutions to (1.9)
with parameters µ, and sufficiently small |µ|, A with ∥Us(·; µ)∥L2 = O(A) on [0, 2π/κ], are in
1-to-1 correspondence with solutions A > 0 to

Re(λ̃(µ)) + ρnl A2 + O(A3) = 0, (3.8)

where λ̃(µ) = r(µ)λµ, cf. (3.5), and r is smooth with r(0) = 1. Stripes have velocity βc with

c = −λβ −
λMβ

kc
aMα −

λκ̃β − λβ

kc
κ̃ + O(aM |ακ̃ | + κ̃2 + |A|3) (3.9)

and, in this comoving frame, are of the form

Us(x; µ) = A(eµ(x) + eµ(x)) +
A2

2
Q2

(
e2ix + e−2ix

)
+ A2Q0 + R, (3.10)

with the smooth remainder R = O(|A|(A2 + aMα
2 + κ̃2 + |βκ̃ | + |β|3)) near µ = 0. Moreover,

the coefficients in the expansion of λ̃ analogous to (3.5) satisfy

λM = ⟨ME0, E∗
0 ⟩, λMβ = ⟨MwAβ + kcBwAα̌, E∗

0 ⟩/λM,

λM κ̃ = ⟨MwAκ̃ − 2kcDwAα̌, E∗
0 ⟩/λM,

ρβ = −kc⟨BwAβ, E∗
0 ⟩, ρκ̃ = −2kc⟨DwAκ̃, E∗

0 ⟩,

γβ = kc⟨BE0, E∗
0 ⟩, γκ̃β = kc⟨BwAκ̃ − 2DwAβ, E∗

0 ⟩ + ⟨BE0, E∗
0 ⟩.

(3.11)

We defer the proof to Appendix D. In case M = Id clearly α uniformly shifts spectra so
that α does not impact higher orders in λµ as can be seen from the fact that λM = 1 and
wAα̌ = λMβ = λM κ̃ = 0 in this case.

In its simplest case, the theorem reflects the well-known fact that, up to translation symmetry,
for ρnl , 0 the bifurcation is a generic pitchfork. Specifically, with respect to α the bifurcation
is supercritical if ρnl < 0, which we shall assume in the following stability study.

Our main interest lies in the role of β and Q. As noted in the discussion of the eigenvalues
above, β shifts the bifurcation points by order β2. From (3.8) we readily solve for the stripe
amplitude as

A =
(
1 + O

(√
Re(λ̃(µ))

)) √
−

Re(λ̃(µ))
ρnl

. (3.12)

Remark 3.3.2. The sign of c = c(µ) is the direction of stripe motion relative to β, and is
determined by λβ as sgn(c) = −sgn(λβ). In terms of a1, a4 we have

sgn(c) = −sgn(a1)

so the motion is with β if the first component is an inhibitor and against β otherwise.
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Proof. Recall the notation of Lemma 3.2.2 and Lemma 3.2.4, which gives λβ = b4
b1+b4

, and we
have b1b4 = b2b3 < 0 and b1 + b4 < 0. For case (1) we note a1 < 0 implies b1 < 0, which
implies b4 > 0 and thus the claim. For case(2) similarly from a4 < 0, we have b4 < 0 which
leads to b1 > 0. Hence λβ = b1+b4−b1

b1+b4
= 1 −

b1
b1+b4

> 1 implies c < −1. □

Notably, the bifurcation loci, where A = 0, occur on a surface in µ-space that includes µ = 0
since the signs of ρβ and ρκ̃ are opposite. The leading order part α + ρββ2 + ρκ̃ κ̃

2 of Re(λ̃(µ))
coincides with that of Re(λµ), cf. (3.5), and is homogeneous with respect to the scalings

(A, α, β, κ̃) = (εA′, ε2α′, εβ′, εκ̃′), (3.13)

with a scaling parameter ε > 0 and consider primed quantities A′ and µ′ = (α′, β′, κ̃′) bounded
with respect to ε. This scaling is homogeneous for µ with respect to the relevant first three terms
in (3.5) and the scaling A = εA′ is natural due to the relation between the parameters and the
amplitude of the striped solutions. In terms of primed quantities, the bifurcation loci, where
A′ = 0, occur at µ′ = (α′, β′, κ̃′) = 0 only. Notably, the impact of M , Id is now at higher order
and highlights that leading order results with the scalings (3.13) will have additional symmetry.

In these scaled parameters with A′, µ′ = O(1) the order analysis of remainders in (3.10)
drastically simplifies to R = O(ε3).

Corollary 3.3.3. Up to spatial translation, non-trivial stripe solutions to (1.9) with parameters
µ = εµ′, and sufficiently small |µ|, A = εA′ with ∥Us(·; µ)∥L2 = O(ε) on [0, 2π/κ], are in 1-to-1
correspondence with solutions A > 0 to

ε2
(
α′ + ρββ

′2 + ρκ̃ κ̃
′2 + ρnl A′2 + O(ε)

)
= 0. (3.14)

Stripes have velocity βc with

c = −λβ + O(ε) (3.15)

and, in this comoving frame, are up to translation of the form

Us(x; µ) = εA′(eµ(x) + eµ(x)) + ε2 A′2
(
1
2

Q2

(
e2ix + e−2ix

)
+Q0

)
+ O(ε3). (3.16)

Proof. Using (3.5) the bifurcation equation (3.8) expands as

α + ρββ
2 + ρκ̃ κ̃

2 + ρnl A2 + O

(
|A|3 + |µ|(|α | + β2 + κ̃2)

)
= 0. (3.17)

Then substituting the homogeneous scalings (3.13) into the above equation yields the claimed
result. □

In terms of scaled parameters, the amplitude formula (3.12) simplifies to

A′ =

√
−
α′ + ρββ′2 + ρκ̃ κ̃

′2

ρnl
+ O(ε).
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3.4 Large wavelength stability

Linearising (D.1) in a striped solution gives the operator and eigenvalue problem for a perturbation
U,

LµU + 2Q[Us,U] + 3K[Us,Us,U] = λU, (3.18)

e.g. in the function space setting noted in Appendix D. It is convenient to write the stripes in real
terms,

Us(x; µ) = 2A(E0 + κ̃wAκ̃ + α̌wAα̌ + β
2wAββ) cos(x) − 2AβwAβ sin(x)

+ A2Q2 cos(2x) + A2Q0 + R.

As we now view stripes Us(x) in two space dimensions x = (x, y) ∈ R2 we may Fourier-transform
(3.18) with respect to y thus replacing ∂2

y by −ℓ2. In x we perform a Floquet-Bloch-transform,
i.e., in Lµ = Lµ(∂x) replace ∂x by ∂x + iγ and impose periodic boundary conditions on [0, 2π],
e.g., [50]. From (3.18) this gives the operator

T := κ2D((∂x + iγ)2 − ℓ2) + L + α̌M + βκB(∂x + iγ) + 2Q[Us, ·] + 3K[Us,Us, ·],

which, as usual, arises for the perturbation in the form

U(x) = ei(γx+ℓy)V(x; γ),

where V(x; γ) has periodicity of Us(x) in x and we write V0(x) := V(x; 0) ∈ R2.

Here we are interesting in the stability of stripes against large wavelength perturbations,
i.e., γ, ℓ ≈ 0. Let us consider the eigenvalue problem TV = λV with respect to a parameter
p ∈ {ℓ, γ} and denote evaluations at p = 0 by subindex zero. The curve of eigenvalues attached
to the translation mode at the origin thus has λ |0 = 0, which is a simple zero eigenvalue with
eigenvector V0. The kernel of T0 is therefore spanned by

∂xUs = − 2A(E0 + κ̃wAκ̃ + α̌wAα̌ + β
2wAββ) sin(x) − 2AβwAβ cos(x)

− 2A2Q2 sin(2x) + O(R).

Differentiating TV = λV with respect to p and evaluating at p = 0 gives

T0(∂pV)0 = (∂pλ)0V0 − (∂pT)0V0. (3.19)

By Fredholm alternative, this is solvable in (∂pV)0 if and only if the right-hand side is orthogonal
to the kernel of adjoint operator of T0 and thus

(∂pλ)0 = ⟨(∂pT)0V0,V∗
0 ⟩ (3.20)

with the normalisation ⟨V0,V∗
0 ⟩ = 1 and V∗

0 in the kernel of the adjoint operator

T ∗
0 := κ2D∂2

x + LT + α̌MT − βκB∂x + (2Q[Us, ·] + 3K[Us,Us, ·])
T .
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In case p = ℓ we have (∂ℓT)0 = 0 and it follows that (∂ℓλ)0 = 0. In case p = γ,

(∂γT)0 = 2iκ2D∂x + iβκB, (3.21)

and it follows that

(∂γλ)0 = iκ⟨(2κD∂x + βB)V0,V∗
0 ⟩ ∈ iR, (3.22)

which measures the correction of the phase velocity c to the group velocity, cf. [10] and Re-
mark E.2.1 in Appendix E.2. It is well known to vanish for stationary wavetrains c = 0 due to
reflection symmetry in x of V0 = ∂xUs and V∗

0 ; here this occurs for β = 0 so that (∂γλ)0 = O(|β|)

as we shall confirm in Appendix E.2.
Differentiating again and evaluating at p = 0 gives

T0(∂
2
pV)0 = (∂2

pλ)0V0 − (∂2
pT)0V0 + 2(∂pλ)0(∂pV)0 − 2(∂pT)0(∂pV)0.

Proceeding as above, in case p = ℓ we have

(∂2
ℓ λ)0 = ⟨(∂2

ℓT)0V0,V∗
0 ⟩ = −2κ2⟨DV0,V∗

0 ⟩, (3.23)

and in case p = γ we have

(∂2
γλ)0 = ⟨(∂2

γT)0V0 − 2(∂γλ)0(∂γV)0 + 2(∂γT)0(∂γV)0,V∗
0 ⟩. (3.24)

These quantities give the curvatures of spectrum at the origin in ℓ and γ directions, respectively.
Other directional derivatives are not relevant since (∂ℓV)0 ∈ ker T0 and thus (∂ℓγλ)0 = 0. Hence,
the signs of (3.23), (3.24) determine the sideband stability or instability of stripes, which is
commonly referred to as Eckhaus un/stable for the x-direction, i.e. with respect to γ and ℓ = 0,
and as zigzag un/stable for the y-direction, i.e., with respect to ℓ and γ = 0.

Zigzag instability It is well-known that stripes become unstable against large wavelength
perturbations parallel to the stripes if the stripes are stretched, while stripes are not as sensitive to
compression. The canonical example is the Swift-Hohenberg equation which has not advection
or quadratic terms. The main point of the next theorem is to exhibit the effect of advection
through β and also the role of quadratic terms in the system.

Theorem 3.4.1 (Zigzag instability). For µ such that the stripe solution (3.10) with the amplitude
A(µ) > 0 exists in (1.9), the curve of spectrum of T for γ = 0 and |ℓ | ≪ 1 attached to the origin
is given by

λzz(ℓ) =
(
kcρκ̃ κ̃ + ρα̌α + ρβββ

2 + Rzz

)
ℓ2, (3.25)

with ρκ̃ as in §3.3, and

ρα̌ := −aMk2
c(⟨DE0,w

∗
Aα̌⟩ + ⟨DwAα̌, E∗

0 ⟩)/λM − q22/ρnl,

ρββ := −k2
c(⟨DE0,w

∗
Aββ⟩ + ⟨DwAββ, E∗

0 ⟩ − ⟨DwAβ,w
∗
Aβ⟩) − q22ρβ/ρnl,

q22 := −k2
c ⟨DQ2,Q∗

2⟩, Rzz = O(aMα
2 + κ̃2 + aM |α |β2 + ℓ2),

(3.26)

where aM = 0 if M = Id, aM = 1 otherwise.
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The proof is presented in Appendix E.1. The theorem in particular shows that λzz depends
to quadratic order on the advection parameter β. In particular, for ρα̌ , 0, the theorem gives the
zigzag stability boundary to leading order as

α = Z(κ̃, β) = −(kcρκ̃ κ̃ + ρβββ
2)/ρα̌. (3.27)

Recall that A = 0 holds for a surface in µ-space that includes µ = 0. The natural scalings
discussed after (3.12) give the following reduced spectrum.

Corollary 3.4.2. Assume the conditions in Theorem 3.4.1 and the scalings (3.13), then the curve
of spectrum of T for γ = 0 and |ℓ | ≪ 1 attached to the origin is given by

λzz(ℓ) = ε (kcρκ̃ κ̃
′ + O(|ε |)) ℓ2.

Here the zigzag stability boundary is given by κ̃ = 0 to leading order, independent of the
advection, cf. Fig. 3.5a & 3.5b (green lines).

(i) (ii) (iii)

(a) β = 0

(A) (B) (C)

(b) β , 0, ρα̌ = 0

(1)
(2)(3)(4)(5)

(c) β , 0, ρα̌ < 0

(1)
(2) (3)(4) (5)

(d) β , 0, ρα̌ > 0

Figure 3.5: Sketches of the different leading order zigzag boundaries in the (κ̃, α)-plane. Stripes exist
in the white regions. Dashed curves: bifurcation curves; coloured solid lines: zigzag boundaries. The
zigzag unstable region lies to the left of each zigzag boundary. In (a): (i) ρα̌ < 0, (ii) ρα̌ = 0, zigzag
boundary is κ̃ = 0, (iii) ρα̌ > 0. In (b): (A) ρββ < 0, (B) ρββ = 0, zigzag boundary is κ̃ = 0, (C) ρββ > 0.
In (c) and (d): (1) Z(0, β) > 0 (ρββ/ρα̌ < 0), (2) Z(0, β) = 0 (ρββ = 0), (3) B(0, β) < Z(0, β) < 0
(0 < ρββ/ρα̌ < ρβ), (4) Z(0, β) = B(0, β) (ρββ/ρα̌ = ρβ), (5) Z(0, β) < B(0, β) (ρββ/ρα̌ > ρβ).

Relaxing these scalings assumptions yields a variety of zigzag stability boundaries depending
on the signs of ρα̌ and ρββ , cf. Fig. 3.5. Non-zero ρα̌ creates a sloping zigzag boundary and
non-zero ρββ shifts the zigzag boundary horizontally. As mentioned in Fig. 3.1b, the attachment
point of the zigzag boundary to the bifurcation loci can be moved and rotated relative to κ̃ = 0.
The bifurcation curve at κ̃ = 0 lies at

α = B(0, β) = −ρββ
2,

and the zigzag boundary at κ̃ = 0 lies at

α = Z(0, β) = −
ρββ

ρα̌
β2

for ρα̌ , 0. Hence we can compare B(0, β) and Z(0, β) and obtain the more accurate positions
of the zigzag boundaries near the bifurcation curve and close to κ̃ = 0, cf. Fig. 3.5.

Notably, the term q22 related to the quadratic form Q appears in both ρα̌ and ρββ . In
particular, vanishing quadratic form Q = 0 gives q22 = 0.
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Remark 3.4.3. For Q = 0 we have q22 = 0, and from Remark 3.2.5, as well as (3.7) and (3.9) a
tedious computation gives

ρββ =
k4

c b2
3d1

b2
1(b1 + b4)4

b4(5b1 + b4).

Recall b1b4 = b2b3 < 0, b1 + b4 < 0 and a1 < 0 implies b1 < 0. Hence, for all sufficiently small
coefficients in Q, we have ρββ < 0 for either a1 < 0, or a1 > 0 and a1 > k2

c d1 − (a4 − k2
c d2)/5,

ρββ > 0 otherwise.

From Theorem 3.3.1 we know that the bifurcation curve for κ̃ = 0 in the (β, α)-plane is to
leading order given by α = −ρββ

2. In order to study the stability at the onset of bifurcation, let
us consider α̃ := α + ρββ2 so the bifurcations occur at α̃ = 0 in the (β, α̃)-plane. It follows that

λzz(ℓ) =
(
kcρκ̃ κ̃ + ρα̌(α̃ − ρββ

2) + ρβββ
2 + Rzz

)
ℓ2

=
(
kcρκ̃ κ̃ + ρα̌α̃ + (ρββ − ρα̌ρβ)β

2 + Rzz

)
ℓ2, (3.28)

and thus the zigzag boundary for ρα̌ , 0 is given by

α̃ = −(kcρκ̃ κ̃ + (ρββ − ρα̌ρβ)β
2)/ρα̌. (3.29)

This dependence on β shows that the advection influences the form of the zigzag stability
boundary near the bifurcation.

Eckhaus instability It is well known that a supercritical Turing bifurcation for β = κ̃ = 0
implies stable Eckhaus sideband, and we next determine the expansion including β, κ̃. Recall the
Eckhaus instability arises from perturbations that vary only in x-direction, i.e., p = γ and ℓ = 0.

Theorem 3.4.4 (Eckhaus instability). For µ such that the stripe solution (3.10) with amplitude
A(µ) > 0 exists in (1.9), the curve of spectrum of T for ℓ = 0 and |γ | ≪ 1 attached to the origin
is given by

λeh = ikc

(
(λκ̃β − λβ)β + O(A2)

)
γ − k2

c
ρκ̃
ρnl

A−2
(
α + ρββ

2 + 3ρκ̃ κ̃2 + Reh

)
γ2,

with Reh := O(µ2 + A2 |µ| + A4 + |γ |).

See Appendix E.2 for the proof and revisit Fig. 3.1 for the (un)stable regions. Here we have
simplified the estimate of Reh – more details can be found in the proof.

Hence, the Eckhaus stability boundary is given to leading order by

α = E(κ̃, β) = −3ρκ̃ κ̃2 − ρββ
2. (3.30)

We note that for κ̃ = 0 this is E(0, β) = −ρββ
2 = B(0, β). Moreover, since ρκ̃ < 0, we have

E(κ̃, β) ≥ B(κ̃, β) so that, as usual, the Eckhaus boundary touches the bifurcation curve at κ̃ = 0
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and lies in the existence region of stripes. Therefore, for κ̃ = 0 the bifurcating stripes are Eckhaus
stable and unstable otherwise.

Analogous to the zigzag stability, we consider α̃ := α + ρββ2 so that

Re(λeh) = −k2
c
ρκ̃
ρnl

A−2
(
α̃ + 3ρκ̃ κ̃2 + Reh

)
γ2, (3.31)

and the Eckhaus boundary becomes

α̃ = −3ρκ̃ κ̃2, (3.32)

which is independent on β to leading order – in contrast to the zigzag boundary. Hence,
the leading order effect of advection through β is just a translation of the Eckhaus boundary
downwards (ρβ > 0) with order β2. In other words, for any fixed α in the existence region, the
width of Eckhaus stable region increases with |β|. The advection can well influence the Eckhaus
stability at higher order, cf. (E.10), but an analysis of this is beyond the scope of this thesis.

3.5 Stability of stripes on lattices

In this section we analyse the stability of stripes on rectangular domains with periodic boundary
conditions that are nearly square or nearly ‘hexagonal’ in the sense that Fourier modes with wave
vectors on a nearly hexagonal lattice are permitted. Indeed, in the Fourier picture these domains
have wavevectors on a lattice, and the stability can be studied by centre manifold reduction.
While this reduction also allows to study other solutions and nonlinear interactions, here we
consider the stability of stripes only.

3.5.1 Centre manifold reduction

In preparation of the concrete cases, we first consider somewhat abstractly centre manifold
reductions for (1.9). Let us denote

L(µ) := Lµ − L0 = α̌M + β(kc + κ̃)B∂x + (2kc κ̃ + κ̃
2)D∆.

Theorem 3.5.1 (Centre manifold reduction). Consider (1.9) posed on the intervalΩ1 = [0, 2π] or
on a square Ω2 = [0, 2π]2 or a rectangle Ω3 = [0, 4π] × [0, 4π/

√
3] on the space X = (L2(Ωj))

2

with periodic boundary conditions and assume a Turing instability occurs at µ = 0. The
generalised kernel N of the associated realisation of L0 and its co-kernel Y have dimension 2 j
on Ωj , j = 1, 2, 3. In all cases, a 2 j-dimensional centre manifold exists for |µ| ≪ 1, which is the
graph of Ψ ∈ C2(N × Λ,Y ) with Ψ(0, 0) = 0, ∂uΨ(0, 0) = 0, and the reduced ODE for uc(t) ∈ N
is of the form

Ûuc = f (uc; µ) := PL(µ)(uc + Ψ(uc, µ)) + PF(uc + Ψ(uc, µ)),

where P : X → N is the projection with kernel Y . In particular,

∂u f (uc; µ) = P
(
L(µ) + ∂uF(uc + Ψ(uc; µ))

)
(Id + ∂uΨ(uc; µ)) + O(|uc |3).



3.5. Stability of stripes on lattices 73

Proof. It suffices to show the claimed dimension of the kernel depending on j; the result then
follows from standard centre manifold theory, e.g., [20], by the definition of Turing instability.
For Ω1 this was already discussed in the previous section. From Lemma 3.2.2 the critical
eigenmodes of L0 are explicitly known, in particular their wavevectors satisfy (k j, ℓj) ∈ S1.
Hence, on Ω2 these are the four choices ksq

1 := (1, 0), ksq
2 := (0, 1) and their negatives, and on Ω3

the six choices k1 := (1, 0), k2 := (−1/2,
√

3/2), k3 := −(1/2,
√

3/2) and their negatives. □

Remark 3.5.2. As to nonlinear terms of f we note that Pv = 0 if v consists of Fourier modes whose
wavevectors are not in S1, which leads to the following resonance condition. Since wavevectors
are added in products, any nonlinear term must stem from products of terms for which the sum
of wavevectors from S1 lies again in S1. Such resonant interactions require at least three terms,
and on Ω2 are possible only among wavevectors in the same spatial direction. In contrast, Ω3

allows for the so-called resonance triads (or three-wave interactions) k1 + k2 + k3 = 0.

Next, we expand the linearisation on the centre manifold somewhat abstractly in order to be
conveniently used for different settings later.

Let us denote Ψjℓ := ∂
j
u∂

ℓ
µΨ(0; 0)/( j!ℓ!) so that Ψ00 = Ψ10 = 0 in general and due to the

zero equilibrium for all parameters also Ψ0j = 0 for all j ≥ 0.

Corollary 3.5.3. Assume the conditions and notations of Theorem 3.5.1 and the scaling (3.13)
so that uc = εA′u1 ∈ N , µ = εµ1 + ε

2µ2 and u1, µ1, µ2 = O(1) with respect to ε. We have
Ψ(uc; µ) = ε2u2 + O(ε3) with u2 := A′2Ψ20[u1, u1] + A′Ψ11[µ1, u1], and it holds that

∂u f (uc; µ) = 2εA′PQ[u1, ·]

+ ε2P
(
L(µ2) + (L(µ1) + 2A′Q[u1, ·])(2A′

Ψ20[u1, ·] + Ψ11[µ1, ·])

+ 2Q[u2, ·] + 3A′2K[u1, u1, ·])
)
+ O(ε3).

(3.33)

Proof. Substituting uc, µ as assumed gives L(µ) = εL(µ1) + ε
2L(µ2) and Taylor expanding

Ψ(uc; µ) = ε2u2 + O(ε3) as well as

∂uΨ(uc, µ) = ε(2A′
Ψ20[u1, ·] + Ψ11[µ1, ·]) + O(ε2),

∂uF(uc + Ψ(uc, µ)) = 2εA′Q[u1, ·] + 2ε2Q[u2, ·] + 3ε2 A′2K[u1, u1, ·] + O(ε3).

Combining these, ∂u f from Theorem 3.5.1 and using that ⟨BE0, E∗
0 ⟩|µ=0 = 0 and ⟨DE0, E∗

0 ⟩ = 0,
which removes PL(µ1), we obtain the claimed form. □

3.5.2 Stability in one space-dimension

We first note that due to lack of triads, cf. Remark 3.5.2 a number of terms in (3.33) vanish:
U = U0eix with any U0 ∈ C2 gives PQ[U, ·] = 0 on N . Analogously, Q[u1, ·], Q[u1,Ψ11[µ1, ·]],
L(µ1)Ψ20[u1, ·], Q[Ψ11[µ1, u1], ·] vanish so that (3.33) simplifies to

∂u f (uc; µ) = ε2P
(
L(µ2) + L(µ1)Ψ11[µ1, ·] + 2A′2Q[Ψ20[u1, u1], ·]

+ 4A′2Q[u1,Ψ20[u1, ·]] + 3A′2K[u1, u1, ·]
)
+ O(ε3).

(3.34)
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Next we infer the matrix form of the linearisation from the existence result. It is convenient
to also span the centre eigenspace by sin and cos, i.e., uc = u0 cos+u1 sin for u0, u1 ∈ R; the
projection in these coordinates is given by P := Id − Ph = ⟨·, E∗

0 cos⟩ cos+⟨·, E∗
0 sin⟩ sin and, up

to translation in x, stripes are given by

Us(x; µ) = 2εA′E0 cos(x)

+ 2ε2 A′
(
κ̃′wAκ̃ cos(x) − β′wAβ sin(x) + A′(Q2 cos(2x) +Q0)

)
+ O(ε3).

Theorem 3.5.4. Assume the conditions and notations of Theorem 3.5.1 for the domainΩ = [0, 2π]
with periodic boundary conditions and velocity parameter c = c(µ) as in (3.9). Stripes Us are
in 1-to-1 correspondence with equilibria uc ∈ N , f (uc, µ) = 0, µ solving (3.8) and, up to
translation in x, Us = uc + Ψ(uc; µ) for uc = 2AE0 cos(x). The linearisation in stripes satisfies
∂u f (uc; µ)E0 sin = 0 as well as ∂u f (uc; µ)E0 cos = 2A2ρnl + O(ε3) with (3.13), and, up to this
order, has the matrix forms

A2

(
2ρnl 0

0 0

)
, A2

(
ρnl ρnl

ρnl ρnl

)
,

in the coordinates cos, sin and e0, e0, respectively.

Proof. Centre manifold equilibria f (uc; µ) = 0 correspond to equilibria near bifurcation and,
due to Theorem 3.3.1, these are stripes so that uc = 2A cos. By translation symmetry P∂xUs lies
in the kernel of ∂u f (2A cos; µ) and in particular each expansion order with respect to A of the
linearisation has the corresponding order of P∂xUs as its kernel. In fact, due to the translation
symmetry of (1.9), the ODE in Theorem 3.5.1 is independent of the translation direction, cf. [20].
Hence, the matrix is diagonal in (cos, sin)-coordinates and it remains to determine the second
eigenvalue. In this reduced equation, the bifurcation of stripes is a generic pitchfork with λµ

the normal form unfolding parameter, and it is well known that the eigenvalue of the bifurcating
branch is to leading order −2λµ = 2ρnl A2 [20]. □

Remark 3.5.5. The proof for the matrix form in Theorem 3.5.4 does not rely on the detailed
expansion of the linearisation (3.34), but can of course be derived from it. This is somewhat
tedious since Ψ20,Ψ11 enter in general, and we do this for the hexagonal lattice in Appendix E.3.

Remark 3.5.6. Here we highlight an a priori consequence for the upcoming stability on lattices:
Under the scalings (3.13), the stripes are Eckhaus- and (neutrally) zigzag-stable for κ̃ = 0,
cf. §3.4. As mentioned in [70, Corollary 2.6], such stripes are spectrally stable in L2(R2) near
onset of Turing instability for β , 0 and thus are stable against each Fourier mode. Hence, in
the stability analysis on lattices, for β , 0 the stripes must be stable against lattice perturbations
near the Turing bifurcation at κ̃ = 0, which is indeed the case, cf. Fig. 3.6b, 3.8d, 3.11a.
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3.5.3 Stability against (quasi-)square perturbations

We start with the simplest case, the stability against (quasi-)square perturbations. Although
it turns out that these are not the dominant instability mechanisms among planar modes, it is
instructive and adds to completeness of the analyses of lattice modes.

We consider the problem (1.9) with periodic boundary conditions on the (quasi-)square
domain

Ωsq := [0, 2π/κ] × [0, 2π/ℓ], κ := kc + κ̃, ℓ := kc + ℓ̃,

with the scaling ℓ̃ = εℓ̃′ in accordance with (3.13), so that ℓ̃ = O(ε). In particular, the quasi-
square domain reduces to the square domain when κ = ℓ. Rescaling the spatial variables with
x̃ = x/κ and ỹ = y/ℓ, so that the scaled domain is given by Ω2 = [0, 2π]2 with dual lattice
wavevectors ksq

j = (k j, ℓj) ∈ R
2, where

ksq
1 = (1, 0), ksq

2 = (0, 1),

and for convenience ksq
−j = −ksq

j , j = 1, 2. As noted in Theorem 3.5.1 this leads to a four
dimensional centre manifold for

uc(x) = Usq(x) =
2∑

j=−2, j,0
u jej,

where u j = u−j ∈ C and ej := eiksq
j ·xE0 are the four linearly independent kernel eigenvectors that

appear for Ω2; we also denote e∗j := eiksq
j ·xE∗

0 .

Theorem 3.5.7. Assume the conditions and notations of Theorem 3.5.1 for the domain Ω2 with
periodic boundary conditions and the scaling (3.13). Let the velocity parameter c = c(µ) be
as in (3.9). The subspace {u j = 0, j = ±2} is invariant for the reduced ODE and contains the
stripes as equilibria. The linearisation in stripes in the index ordering (1,−1, 2,−2) has a block
diagonal matrix of the form Lsq = diag(L1, Lsq

2 ) + O(ε3) with 2 × 2-subblocks

L1 = A2

(
ρnl ρnl

ρnl ρnl

)
, Lsq

2 = ε
2

(
λ′
ℓ̃
+ A′2ξ 0

0 λ′
ℓ̃
+ A′2ξ

)
,

where λ′
ℓ̃

:= α′ + ρκ̃ ℓ̃
′2
+ O(ε) is real and

ξ := 6k0 + 2q0 + 8q11, q11 := ⟨Q[E0,Q11], E∗
0 ⟩, Q11 := −(−2k2

c D + L)−1Q[E0, E0].

See Appendix E.3 for the proof.
The eigenvalues of the matrix L1 are 0 and 2ρnl A2 < 0, as in Theorem 3.5.4, which reflects

that the stripes are stable against perturbations in the x-direction on this domain.
Concerning the subblock Lsq

2 , we first note the general form of eigenvalues.
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Lemma 3.5.8. Under the assumptions of Theorem 3.5.7, the double eigenvalue of the matrix Lsq
2

is real and given by

λ = ε2
(
A′2(3k0 − q2 + 8q11) − ρββ

′2 + ρκ̃(ℓ̃
′2
− κ̃′2)

)
+ O(ε3),

where A′ =

√
−(α′ + ρββ′2 + ρκ̃ κ̃

′2)/ρnl + O(ε).

Proof. The two eigenvalues are the same diagonal term which, by (3.8), read

ε2(λ′
ℓ̃
+ A′2ξ) = ε2(−A′2ρnl − ρββ

′2 − ρκ̃ κ̃
2 + ρκ̃ ℓ̃

2
+ A′2ξ) + O(ε3),

and (3.8) gives A′ as claimed; that λ′
ℓ̃

is real was already stated in Theorem 3.5.7. □

We note that the signs of q2, q11 depend on Q. For the sake of simplicity and comparison with
(quasi-)hexagonal stabilities discussed below, we consider Hypothesis 3.1.1. This immediately
gives the following rectangular stability result.

Corollary 3.5.9 ((Quasi-)square lattice stabilities). Under the assumptions of Theorem 3.5.7 and
Hypothesis 3.1.1 the double eigenvalue of matrix Lsq

2 is given by

λsq = ε
2
(
−α′ − 2ρββ′2 + ρκ̃(ℓ̃

′2
− 2κ̃′2)

)
+ o(ε2). (3.35)

The stability boundary λsq = 0 in terms of unscaled parameters is given by

α = Q(κ̃, β; ℓ̃) := −2ρββ2 + ρκ̃(ℓ̃
2
− 2κ̃2). (3.36)

For any κ̃ and fixed β, if |ℓ̃ | ≥ | κ̃ |, then Q(κ̃, β; ℓ̃) ≤ B(κ̃, β) and thus the stripes are stable against
the square perturbation and the quasi-square perturbations with |ℓ̃ | > | κ̃ |. The curvature of Q
with respect to κ̃ is larger than that of B for |ℓ̃ | < | κ̃ |, which causes unstable stripes against quasi-
square perturbations. The most unstable quasi-square perturbation occurs at ℓ̃ = 0, cf. Fig. 3.6.
However, note that the Eckhaus boundary is dominant since α = E(κ̃, β) ≥ Q(κ̃, β; 0).

3.5.4 Stability against hexagonal perturbations

Concerning the six-dimensional lattice modes, we first study the exact hexagonal perturbation as
a basis for the more unstable quasi-hexagonal perturbations. On the one hand, it is natural and
relatively easier to consider the hexagonal case as, e.g. in the amplitude equations approach. On
the other hand, the stability proof is neat and can be extended to the quasi-hexagonal case.

We consider the system (1.9) with periodic boundary condition on the rectangular domains

Ωhex = [0, 4π/κ] × [0, 4π/(
√

3κ)], κ = kc + κ̃,

and isotropically rescale toΩ3 = [0, 4π]×[0, 4π/
√

3]with dual lattice wavevectors kj = (k j, ℓj) ∈

R2, where k−j = −kj , j = 1, 2, 3, cf. Remark 3.5.2,

k1 = (1, 0), k2 = (−1/2,
√

3/2), k3 = −(1/2,
√

3/2).
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(a) β = 0 (b) β , 0

Figure 3.6: Sketches of the stability regions in the (κ̃, α)-plane for ℓ̃ = 0. Stripes exist in the complements
of the dark grey regions. Light grey: quasi-square-unstable; hatched region: Eckhaus-unstable; white:
stable; dashed curve: bifurcation curve α = B(κ̃, β); dotted curve: Eckhaus boundary α = E(κ̃, β); black
solid curves: quasi-square stability boundary α = Q(κ̃, β; 0).

As noted in Theorem 3.5.1 this leads to a six dimensional centre manifold for

uc(x) = Uhex(x) =
3∑

j=−3, j,0
u jej,

where u j = u−j ∈ C and ej := eik j ·xE0 are the six linearly independent kernel eigenvectors that
appear for Ω3; we also denote e∗j := eik j ·xE∗

0 . For convenience, here we use the same notation
for the wavevectors and (adjoint) eigenvectors as in §3.5.3.

Theorem 3.5.10. Assume the conditions and notations of Theorem 3.5.1 for the domain Ω3 with
periodic boundary conditions, and the parameter scaling (3.13) for µ. Let the velocity parameter
c = c(µ) be as in (3.9). The subspace {u j = 0, j = ±2,±3} is invariant for the reduced
ODE and contains the stripes as equilibria. The linearisation in stripes in the index ordering
(1,−1, 2,−3, 3,−2) has a block diagonal matrix of the form Lhex = diag(L1, Lhex

2 , Lhex
2 ) + O(ε3)

with 2 × 2-subblocks

L1 = A2

(
ρnl ρnl

ρnl ρnl

)
, Lhex

2 = ε2

(
λ′µ,2 + A′2η 2A′ q

ε + A′p(µ1)

2A′ q
ε + A′p(µ1) λ′µ,2 + A′2η

)
,

where λ′µ,2 := α′ + 1
4 ρββ

′2 + ρκ̃ κ̃
′2 + O(ε) and

q := ⟨Q[E0, E0], E∗
0 ⟩, η := 6k0 + 2q0 + 8q1, q1 := ⟨Q[E0,Q1], E∗

0 ⟩,

Q1 := (−k2
c D + L)−1(⟨Q[E0, E0], E∗

0 ⟩E0 − Q[E0, E0]),

p(µ1) := ⟨Q[iβ′wAβ + 4κ̃′wAκ̃, E0], E∗
0 ⟩ + ⟨(−4κ̃′kcD − iβ′kcB)Q1, E∗

0 ⟩.

See Appendix E.4 for the proof.

Since L1 concerns perturbations in the x-direction, i.e., orthogonal to stripe, from Theo-
rem 3.5.4 we know that L1 has the eigenvalues 0 and 2ρnl A2 < 0.

Concerning the subblock Lhex
2 , we first note the general form of eigenvalues.
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Lemma 3.5.11. Under the assumptions of Theorem 3.5.10, the eigenvalues of the matrix Lhex
2

are
λ± = ε

2
(
A′2(3k0 − q2 + 8q1) −

3
4
ρββ

′2 ± A′

����2q
ε
+ A′p(µ1)

����) + O(ε3),

where A′ =

√
−(α′ + ρββ′2 + ρκ̃ κ̃

′2)/ρnl + O(ε).

Proof. The matrix Lhex
2 is of the form

(
a b
b̄ a

)
with a ∈ R, b ∈ C, and such a matrix possesses

the two real eigenvalues λ± = a ± |b|. For λ±, b is as in the matrix unchanged, and for a we have

a = ε2(λ′µ,2 + A′2η) = ε2
(
−A′2ρnl −

3
4
ρββ

′2 + A′2η

)
+ O(ε3)

and using (3.8) gives the claimed form. □

The lemma shows that for small ε and q = O(1) with respect to ε we have λ+ > 0, and
the stripe thus unstable. In order to study destabilisation of stripes near onset, and thus the
competition of quadratic term and advection, we therefore assume q = εq′ with q′ = O(1).
This is most easily realised by Hypothesis 3.1.1, which assumes the entire quadratic term has a
prefactor ε, though we note that q = εq′ can be realised by a scaling assumption on certain parts
of Q only.

In this case we can rewrite the entries in Lhex
2 related to Q as follows

q = εq′, q1 = ε
2q′

1, η = 6k0 + ε
2(2q′

0 + 8q′
1), Q1 = εQ′

1, p(µ1) = εp′(µ1),

with bounded primed quantities. Moreover, we recall

ρnl = 3k0 + ε
2(2q′

0 + q′
2) < 0

with sign due to the assumed supercriticality of the stripe bifurcating so that also k0 < 0. This
gives the following hexagonal in/stability result.

Theorem 3.5.12 (Hexagonal lattice stability). Under the assumptions of Theorem 3.5.10 and
Hypothesis 3.1.1 the eigenvalues of the matrix Lhex

2 are given by

λ±hex = ε
2
(
3k0 Ã′2

−
3
4
ρββ

′2 ± 2Ã′
|q′ | + O(ε)

)
, (3.37)

where Ã′ :=
√
−(α′ + ρββ′2 + ρκ̃ κ̃

′2)/(3k0). In particular, λ±hex ∈ R.

Proof. Using Lemma 3.5.11 the claim directly follows from Hypothesis 3.1.1 and the resulting
factors of ε as noted above. The term Ã′ stems from the leading order of A′, i.e., A′ =

Ã′
+ O(ε). □
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In particular, under these assumptions, q′ is the only relevant quantity that relates to Q. In
case Q = o(ε) we have q′ = 0 so that λ±hex < 0, i.e., stripes are always stable on the hexagonal
lattice, since k0 < 0 and ρβ > 0.

In Theorem 3.5.12 the eigenvalue λ−hex is stable for all µ and q such that the striped solution
(3.10) exists. The sign of λ+hex, however, depends on both µ and q. A critical eigenvalue λ+hex = 0
to leading order requires 3k0 Ã′2

− 3
4 ρββ

′2 < 0 or equivalently

α > −
7
4
ρββ

2 − ρκ̃ κ̃
2

in terms of unscaled parameters. Since − 7
4 ρββ

2 − ρκ̃ κ̃
2 < B(κ̃, β) the above condition is

automatically fulfilled for µ such that the stripes exist.
Solving λ+hex = 0 yields the hex-stability boundaries to leading order. In terms of the unscaled

parameters this reads

{α = H±(κ̃, β, q) : α ≥ B(κ̃, β), δH ≥ 0}, (3.38)

where

H±(κ̃, β, q) := −
7
4
ρββ

2 − ρκ̃ κ̃
2 −

1
3k0

(
2q2 ±

√
δH

)
, (3.39)

δH := 4q4 + 9k0q2ρββ
2. (3.40)

We remark that since α ∈ R, the condition δH ≥ 0 appears. The stripes are hex-unstable for
δH > 0 and α ∈ (H−,H+), and hex-stable otherwise.

For the sake of simplicity of the notations, we formulate the hex-stability boundaries in terms
of the unscaled parameters in §3.5.4 and §3.5.4.

Stripes with critical wavenumber

We first consider the stripes with the Turing critical wavenumber, i.e., κ̃ = 0.

Case β = 0, κ̃ = 0 (Fig. 3.7a) The hex-stability boundary reduces to a parabola

α = H+(0, 0, q) = −
4

3k0
q2. (3.41)

This coincides with the well-known result that the stripes are hex-unstable near the onset of
Turing bifurcation except for q = 0 [19]. The other curve α = H−(0, 0, q) = 0 overlaps the
bifurcation curve α = B(0, 0) = 0.

Case β , 0, κ̃ = 0 (Fig. 3.7b) The hex-stability boundaries are given by

α = H±(0, β, q) := −
7
4
ρββ

2 −
1

3k0

(
2q2 ±

√
4q4 + 9k0q2ρββ2

)
. (3.42)
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(a) β = 0, κ̃ = 0 (b) β , 0, κ̃ = 0

(c) β = 0, κ̃ , 0 (d) β , 0, κ̃ , 0

Figure 3.7: Sketches of the hexagonal stability regions of stripes in the (q, α)-plane. Stripes exist in the
complement of the dark grey regions. White: hex-stable; grey: hex-unstable. Dashed line: bifurcation
line α = B(0, β); solid curves: hex-stability boundaries (a) α = H+(0, 0, q), cf. (3.41) (b) α = H±(0, β, q),
cf. (3.42) (c) α = H+(κ̃, 0, q), cf. (3.45) (d) α = H±(κ̃, β, q), cf. (3.39).

There exist two turning points (±qtp, αtp) given by

qtp =
3
2
|β |

√
−k0ρβ, αtp = −

1
4
ρββ

2. (3.43)

The boundaries below the turning points are given by H− which decreases to zero for increasing
|q |. Hence there exists a hex-stable region near the bifurcation. In particular, for |q | < qtp, the
stripes are hex-stable for all α. These indicate that the advection stabilises the stripes: for β , 0
stripes bifurcate stably in accordance with Remark 3.5.6, and advection ‘opens’ a stable window
for small quadratic effects. Nevertheless, the hex-unstable region becomes larger for larger |q |,
which highlights the destabilising effect of the quadratic term.

Remark 3.5.13. For fixed |q | > qtp, the stable stripes lose the stability when α increases to α∗
where α∗ < αtp. In fact, at α = αtp the homogeneous steady state becomes unstable against
hexagonal modes, cf. (3.5), also see Fig. 3.4 (green curve). Hence, the stable stripes lose stability
‘before’ the bifurcation of hexagons.

Stripes with off-critical wavenumber

Now we turn to hex-stability of stripes with off-critical wavenumber κ = kc + κ̃, κ̃ , 0. We also
compare the hex-instability with Eckhaus instability in (κ̃, α)-plane. Recall that the stripes are
zigzag unstable (stable) for κ̃ < 0 (κ̃ > 0).
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(a) β = 0, q = 0 (b) β = 0, q , 0 (c) β , 0, q = 0

(d) 0 < |β | < βtp, q , 0 (e) |β | = βtp, q , 0 (f) |β | > βtp, q , 0

Figure 3.8: Sketches of the stability regions in the (κ̃, α)-plane. Stripes exist in the complement of the dark
grey regions; light grey: hex-unstable; hatched regions: Eckhaus-unstable; white: hex-stable. Bifurcation
α = B(κ̃, β) (dashed); Eckhaus boundary α = E(κ̃, β) (dotted); hex-stability boundaries (solid) in (a)
α = H±(κ̃, 0, 0) = B(κ̃, 0), cf. (3.44) (b) α = H+(κ̃, 0, q) > B(κ̃, 0) and α = H−(κ̃, 0, q) = B(κ̃, 0),
cf. (3.45) (c) α = H±(κ̃, β, 0) < B(κ̃, β), cf. (3.46) (d) α = H±(κ̃, β, q) > B(κ̃, β), cf. (3.39) (e)
α = H±(κ̃, βtp, q), (f) do not exist.

In the (q, α)-plane, for any fixed β, the stability boundaries are shifted upwards compared
with κ̃ = 0, cf. Fig. 3.7c & 3.7d.

In the (κ̃, α)-plane the situation is more involved and can be compared with the Eckhaus
instability. In Fig. 3.8 we plot all cases in terms of β and q, and derive these next.

Case β = 0, q = 0 (Fig. 3.8a) The hex-stability boundary is given by

α = H±(κ̃, 0, 0) = −ρκ̃ κ̃
2, (3.44)

which coincides with the bifurcation curve since H±(κ̃, 0, 0) = B(κ̃, 0). Hence the stripes are
hex-stable, and the dominant instability mechanism is the Eckhaus boundary.

Case β = 0, q , 0 (Fig. 3.8b) The hex-stability boundaries are given by

α = H+(κ̃, 0, q) = −
4

3k0
q2 − ρκ̃ κ̃

2,

α = H−(κ̃, 0, q) = −ρκ̃ κ̃
2,

(3.45)

where H−(κ̃, 0, q) = B(κ̃, 0). Hence the stripes are hex-unstable near the bifurcation, which is
thus the dominant mechanism near onset. In addition, the curvature of each of the hex-stability
boundaries is smaller than that of Eckhaus boundary since ∂2

κ̃H± < ∂2
κ̃E.
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Case β , 0, q = 0 (Fig. 3.8c) The hex-stability boundary is given by

α = H±(κ̃, β, 0) = −
7
4
ρββ

2 − ρκ̃ κ̃
2. (3.46)

Since H±(κ̃, β, 0) < B(κ̃, β), the bifurcating stripes are always hex-stable, and the Eckhaus
instability is dominant, again in accordance with Remark 3.5.6.

Case β , 0, q , 0 (bottom row of Fig. 3.8) The hex-stability boundaries are given by (3.39),
and roots of the discriminant δH = 0 from (3.40), lie at

β = βtp :=
2|q |

3
√
−k0ρβ

. (3.47)

We summarise the stability results in terms of β for fixed q , 0 as follows.

(1) |β| < βtp (Fig. 3.8d): hex-stability boundaries satisfy H±(κ̃, β, q) > B(κ̃, β) so that stripes
are hex-stable near onset, but there is a hex-unstable ‘band’ which intersects the α-axis on
the interval [H−(0, β, q),H+(0, β, q)].

(2) |β| = βtp (Fig. 3.8e): The hex-stability boundaries collapse along

α = H±(κ̃, βtp, q) =
q2

9k0
− ρκ̃ κ̃

2,

which intersects α-axis at αtp = −ρββ
2
tp/4 = q2/(9k0), cf. (3.43). Notably, this degenerate

case does not occur for quasi-hexagonal lattices discussed below.

(3) |β | > βtp (Fig. 3.8f): H± are complex, so there is no hex-stability boundary in the real
parameter space and the stripes are hex-stable.

In addition, we recall the threshold qtp, cf. (3.43), and highlight the relation sgn(|β | − βtp) =

−sgn(|q | − qtp). Therefore, by increasing |q | for fixed β , 0 the hexagonal boundaries change as
from Fig. 3.8f to 3.8d.

Remark 3.5.14. Recall that the zigzag stability boundary is κ̃ = 0, which we suppressed to
ease the exposition. Hence, compared to the hex-stability, for β = q = 0 the large wavelength
instabilities are dominant near onset, whereas for β , 0 the large wavelength instabilities are
always dominant sufficiently close to onset as predicted in Remark 3.5.6, cf. bottom row of
Fig. 3.8. We thus infer stabilisation by the advection and destabilisation by the quadratic term
with respect to hexagonal modes.

We consider the width of the unstable band for fixed q in Fig. 3.8d by setting α̃ := α +

ρββ
2 + ρκ̃ κ̃

2 so that stripe bifurcations occur at α̃ = 0. Then the hex-stability boundaries in the
(β, α̃)-plane are

α̃ = H̃±(β) := −
3
4
ρββ

2 −
1

3k0

(
2q2 ±

√
4q4 + 9k0q2ρββ2

)
, (3.48)
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Figure 3.9: Sketch of the hex-unstable region in the (β, α̃)-plane for fixed q , 0. Solid curve: hex-boundary
α̃ = H̃±(β), cf. (3.48); grey: hex-unstable; white: hex-stable.

see Fig. 3.9. In particular, H̃−(0) = 0, H̃+(0) = −4q2/(3k0) and H̃±(βtp) = −q2/(3k0) so the
width of hex-unstable band is smaller for larger |β |, showing the stabilisation of the advection.
Note that the width of the unstable band is independent of κ̃, which will be different for the
quasi-hexagonal lattice modes considered next.

3.5.5 Stability against quasi-hexagonal perturbations

We consider the stability of stripes against quasi-hexagonal perturbation, which are nearly
hexagonal perturbations that still possess triads k1 + k2 + k3 = 0.

We consider (1.9) with periodic boundary conditions on the rectangular domain

Ωqh := [0, 4π/κ] × [0, 4π/(
√

3ℓ)], κ := kc + κ̃, ℓ := kc + ℓ̃, ℓ̃ , κ̃,

with the scaling ℓ̃ = εℓ̃′ so that ℓ̃ = O(ε) analogous to κ̃. Rescaling the spatial variables with
x̃ = x/κ and ỹ = y/ℓ, the rectangular domain becomes Ω3 = [0, 4π] × [0, 4π/

√
3] with dual

lattice wavevectors kj = (k j, ℓj) ∈ R
2, and the perturbation on the six dimensional kernel is given

by Uhex(x), cf. §3.5.4. Analogous to Theorem 3.5.10, we have the following.

Theorem 3.5.15. Consider (1.9) with periodic boundary conditions on rectangular domainΩqh.
Assume the conditions and notations of Theorem 3.5.1 for the domainΩ3 with periodic boundary
conditions and the parameter scaling (3.13) for µ. Let the velocity parameter c = c(µ) be as
in (3.9). The subspace {u j = 0, j = ±2,±3} is invariant for the reduced ODE and contains the
stripes as equilibria. The linearisation in stripes in the index ordering (1,−1, 2,−3, 3,−2) has a
block diagonal matrix of the form Lqh = diag(L1, Lqh

2 , Lqh
2 ) + O(ε3) with 2 × 2-subblocks

L1 = A2

(
ρnl ρnl

ρnl ρnl

)
, Lqh

2 = ε
2 ©­«

λ′
µ,ℓ̃
+ A′2η 2A′ q

ε + A′p(µ1, ℓ̃
′
)

2A′ q
ε + A′p(µ1, ℓ̃

′
) λ′

µ,ℓ̃
+ A′2η

ª®¬
where η is as in Theorem 3.5.10 and

λ′
µ,ℓ̃

:= α′ +
1
4
ρββ

′2 +
ρκ̃
16

(κ̃′ + 3ℓ̃′)2 + O(ε),

p(µ1, ℓ̃
′
) := ⟨Q[iβ′wAβ + (

5
2 κ̃

′ + 3
2 ℓ̃

′
)wAκ̃, E0] − (iβ′kcB + (κ̃′ + 3ℓ̃′)kcD)Q1, E∗

0 ⟩.
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Proof. The rescaled linear operator of (1.9) is given by

L
qh
µ := κ2D∂2

x + ℓ
2D∂2

y + L + α̌M + βκB∂x .

Analogous to the proof of Theorem 3.5.10, the linearisation in stripes gives the same matrix L1

since the rescaling in y-direction does not influence the one-dimensional stability. The matrix
Lqh

2 , however, is different from Lhex
2 . The eigenvalue λ′

µ,ℓ̃
is that of the linearisation in the

trivial equilibrium whose expansion can be determined analogous to Lemma 3.2.2. The term
p(µ1) is replaced by p(µ1, ℓ̃

′
) by straightforward calculation, which is analogous to the proof in

Appendix E.4. □

Concerning the subblock Lqh
2 , we first note the general form of eigenvalues.

Lemma 3.5.16. Under the assumptions of Theorem 3.5.15, the eigenvalues of the matrix Lqh
2 are

λ± = ε
2
(
A′2(3k0 − q2 + 8q1) −

3
4
ρββ

′2 + ω′ ± A′

����2q
ε
+ A′p(µ1, ℓ̃

′
)

����) + O(ε3),

where A′ =

√
−(α′ + ρββ′2 + ρκ̃ κ̃

′2)/ρnl + O(ε) and ω′ := (9ℓ̃′ + 15κ̃′)(ℓ̃′ − κ̃′)ρκ̃/16. The
most unstable quasi-hexagonal perturbation with respect to ℓ̃ occurs at ℓ̃ = −κ̃/3 for which
ω = −ρκ̃ κ̃

2 ≥ 0, and ℓ̃ = 0 gives ω = 0 and λ± = λ±hex.

Proof. The eigenvalues are derived as in Lemma 3.5.11. As a function of ℓ̃, the parabola
ω = ω(ℓ̃) has positive maximum maxℓ̃∈R ω = −ρκ̃ κ̃

2 at ℓ̃ = −κ̃/3. □

Remark 3.5.17. We note a relation of the most unstable quasi-hexagonal modes at ℓ̃ = −κ̃/3 to
the critical circle of spectrum Skc at the onset of the Turing instability. Indeed, it follows from
(1

2 (kc + κ̃))
2 + (

√
3

2 (kc + ℓ̃))
2 = k2

c that ℓ̃ = − 1
3 κ̃ −

2
9kc
κ̃2 + O(κ̃3). Therefore, the locations of the

most unstable oblique wavevectors are to leading order on the critical circle Skc .

In the remainder of this section, we focus on the quasi-hexagonal perturbation that are more
unstable than the hexagonal ones, i.e. in caseω > 0, and parametriseω ∈ (0,−ρκ̃ κ̃2] by θ ∈ (0, 1]
via

ω = −θρκ̃ κ̃
2,

so θ = 1 is the most unstable quasi-hexagonal perturbation and the limit θ = 0 yields the
hexagonal one. The previous lemma shows that as for hexagonal perturbations, a smallness
assumption on q is required, and as in Theorem 3.5.12 this changes A′ in Lemma 3.5.16 to where
Ã′ :=

√
−(α′ + ρββ′2 + ρκ̃ κ̃

′2)/(3k0). However, unlike the hexagonal stability, for Q = o(ε) the
stripes are not necessarily stable against quasi-hexagonal perturbations. The previous lemma
then directly gives

Theorem 3.5.18. Under the assumptions of Theorem 3.5.15 and θ ∈ (0, 1] the quasi-hexagonal
stability boundary, i.e., zero real part of the eigenvalues of the matrix Lqh

2 is to leading order
given as follows.
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If Q = g(ε)Q′, g(ε) = o(ε) this stability boundary reads

α =Mqh(κ̃, β; θ) := −
7
4
ρββ

2 − (θ + 1)ρκ̃ κ̃2. (3.49)

Under Hypothesis 3.1.1 this stability boundary is given by the two curves

{α =M±
qH(κ̃, β, q; θ) : α ≥ Mqh(κ̃, β; θ), δM ≥ 0}, (3.50)

{α =M±
qH(κ̃, β, q; θ) : α ≤ Mqh(κ̃, β; θ), δM ≥ 0}, (3.51)

corresponding to the two eigenvalues λσ with possibly different σ = ±, where

M±
qH(κ̃, β, q; θ) := −

7
4
ρββ

2 − (θ + 1)ρκ̃ κ̃2 −
1

3k0

(
2q2 ±

√
δM

)
,

δM := 4q4 + 9k0ρββ
2q2 + 12k0θρκ̃ κ̃

2q2. (3.52)

Isotropic case β = 0

For Q = O(ε), the quasi-hex-stability boundary is given to leading order by the following two
parts, see Fig. 3.2a.

α =M+
qH(κ̃, 0, q; θ) = −(θ + 1)ρκ̃ κ̃2 −

2
3k0

(
q2 +

√
q4 + 3k0θρκ̃ κ̃

2q2
)
, (3.53)

α =M−
qH(κ̃, 0, q; θ) = −(θ + 1)ρκ̃ κ̃2 −

2
3k0

(
q2 −

√
q4 + 3k0θρκ̃ κ̃

2q2
)
. (3.54)

In the (q, α)-plane, the boundary α =M+
qH(κ̃, 0, q; θ) intersects the α-axis at M+

qH(κ̃, 0, 0; θ),
where M+

qH(κ̃, 0, 0; θ) = −(θ + 1)ρκ̃ κ̃2. Since θ > 0, we have M+
qH(κ̃, 0, q; θ) > B(κ̃, 0). Thus the

stripes are quasi-hex-unstable near onset. Note that for Q = o(ε), the stability boundary (3.49)
is independent of q.

In the (κ̃, α)-plane, the following cases for the quasi-hex-stability boundary occur.

Case β = 0, q = 0 (Fig. 3.10a) The quasi-hex-stability boundaries are independent of q. Hence
for both Q = O(ε) and Q = o(ε), the quasi-hex-stability boundaries read

α =M±
qH(κ̃, 0, 0; θ) = −(θ + 1)ρκ̃ κ̃2 =Mqh(κ̃, 0; θ). (3.55)

Note that since θ ∈ (0, 1], we have B(κ̃, 0) ≤ M±
qH(κ̃, 0, 0; θ) =Mqh(κ̃, 0; θ) ≤ E(κ̃, 0).

Case β = 0, q , 0 (Fig. 3.10b) For Q = O(ε), the quasi-hex-stability boundary is on the one
hand given by (3.50) as (3.53) at β = 0, which intersects the vertical axis at M+

qH(0, 0, q; θ) =
−4q2/(3k0). The ordinate of intersections of Eckhaus boundary and quasi-hex-stability boundary
is given by αsec := −

8q2

k0(2−θ)2
= O(ε2). Hence, the quasi-hexagonal instability is the dominant

instability mechanism near onset. On the other hand, (3.51) gives as (3.54) at β = 0 a quasi-hex-
stability boundary which passes through the origin with curvature larger than that of Eckhaus
boundary.

For Q = o(ε), the quasi-hex-stability boundary is given by α = Mqh(κ̃, 0; θ), and we have
the relation M−

qH(κ̃, 0, q; θ) ≤ Mqh(κ̃, 0; θ) < M+
qH(κ̃, 0, q; θ).
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(a) β = 0, q = 0 (b) β = 0, q , 0 (c) β , 0, q = 0

Figure 3.10: Sketches of the stability regions in the (κ̃, α)-plane for θ ∈ (0, 1]. Stripes exist in the
complements of the dark grey regions. Light grey: quasi-hex-unstable; hatched region: Eckhaus-unstable;
white: stable; dashed curve: bifurcation curve α = B(κ̃, 0); dotted curve: Eckhaus boundary α = E(κ̃, 0).
(a) Quasi-hex-boundary (3.55) (black solid). (b) Quasi-hex-boundary for Q = O(ε) (3.53) (black solid),
(3.54) (blue solid) and for Q = o(ε) (3.49) (dotted dashed). (c) Quasi-hex-boundary (3.58) (black solid).

Anisotropic case β , 0

We first consider the quasi-hex-stability in the (q, α)-plane. Since Q = o(ε) the quasi-hex-stability
boundary is independent of q we omit this case.

For Q = O(ε), roots of δM = 0 from (3.52) occur as a function of q precisely when
9ρββ2 + 12θρκ̃ κ̃2 ≤ 0 so that the threshold in terms of β lies at

β = βep := 2| κ̃ |
√
−θρκ̃/(3ρβ). (3.56)

Notably, βep = 0 for the hexagonal modes, i.e., θ = 0, which is consistent with Fig. 3.7.

We summarise the quasi-hex-stability boundaries in the (q, α)-plane as follows.

(1) |β| < βep (Fig. 3.2a): α =M+
qH(κ̃, β, q; θ) has minimum at q = 0 where M+

qH(κ̃, β, 0; θ) >
B(κ̃, β). Thus the stripes are unstable near the bifurcation.

(2) |β| = βep (Fig. 3.2b): α =M+
qH(κ̃, βep, q; θ) is a parabola in q which touches the bifurcation

line at q = 0 since M+
qH(κ̃, βep, 0; θ) = B(κ̃, βep).

(3) |β| > βep (Fig. 3.2c): α = M±
qH(κ̃, β, q; θ) ‘opened up’: the stripes are unstable for

α ∈ (M−
qH,M

+
qH) and stable elsewhere; in particular the stripes are stable near onset and

there are two turning points given by (±qtp,θ, αtp,θ) where

qtp,θ :=
1
2

√
−12k0θρκ̃ κ̃

2 − 9k0ρββ2, αtp,θ := −
1
4
ρββ

2 + (θ − 1)ρκ̃ κ̃2. (3.57)

In particular, the stripes are stable for |q | < qtp,θ and all α, cf. Fig. 3.2d. Such stable
window ‘opens’ later for larger | κ̃ | and ‘opens’ larger for larger |β|.

Next, we discuss the quasi-hex-stability boundary in the (κ̃, α)-plane.
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Case β , 0, q = 0 (Fig. 3.10c) The quasi-hex-stability boundary is independent of q. Hence
for both Q = O(ε) and Q = o(ε), the quasi-hex-stability boundary is given by

α =M±
qH(κ̃, β, 0; θ) = −

7
4
ρββ

2 − (θ + 1)ρκ̃ κ̃2 =Mqh(κ̃, β; θ), (3.58)

which is a parabola in κ̃ and is shifted downwards by increasing |β |. Its curvature is smaller than
that of Eckhaus boundary since ∂2

κ̃M
±
qH < ∂2

κ̃E, and thus the Eckhaus instability is dominant.

Case β , 0, q , 0 (Fig. 3.11) For Q = o(ε), the quasi-hex-stability boundary is given by
α =Mqh(κ̃, β; θ), cf. (3.49), which is a parabola in κ̃.

For Q = O(ε), we recall that the quasi-hex-stability boundaries are given by (3.50) and (3.51),
respectively. The boundaries (3.50) have been shown in Fig. 3.3b–3.3e. For the completeness of
the stability diagrams, however, we replot them in Fig. 3.11. Solving E(κ̃, β) =M±

qH(κ̃, β, q; θ)
we find the critical value βex such that E and M±

qH have only two intersection points for β = βex,
where

βex =
2
3
|q |

√
2

k0(θ − 2)ρβ
(3.59)

and βex > βtp where βtp is given by (3.47). This gives the following subcases:

(1) |β | < βtp (Fig. 3.11a): The quasi-hex-stability boundary is given by (3.50) and composed
of two curves. The lower curve touches the bifurcation curve at the endpoints (±κ̃ep, αep)

where

κ̃ep = |β |

√
−

3ρβ
4θρκ̃

> 0, αep :=
(

3
4θ

− 1
)
ρββ

2.

In particular, the stripes are quasi-hex-stable near onset for | κ̃ | < κ̃ep only, and these
endpoints diverge θ → 0, thus limiting to the hexagonal case, cf. Fig. 3.8d. In addition, the
stability boundaries intersect the vertical axis at M±

qH(0, β, q; θ) = H±(0, β, q). Moreover,
the ordinate of intersections of quasi-hex-stability and Eckhaus boundary is given by

α±
sec,β = −

1
4k0(2 − θ)2

(
16q2 + k0ρββ

2(4θ2 − 25θ + 34)

± 4
√

16q4 + 18k0(2 − θ)q2ρββ2
)
= O(ε2).

Compared to the isotropic case (cf. Fig. 3.10b), non-zero β creates a stable region near
the bifurcation and moves the upper boundary downwards, thus the advection stabilises
the stripes.

(2) |β | = βtp (Fig. 3.11b): The quasi-hex-stability boundaries intersect with the vertical axis
at a single point M±

qH(0, βtp, q; θ) = H±(0, βtp, q) = − 1
4 ρββ

2
tp = q2/(9k0).
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(3) βtp < |β | < βex (Fig. 3.11c): The quasi-hex-stability boundary ‘opened up’ and consists
of two curves whose turning points are given by (±κ̃mp, αmp), where

κ̃mp :=

√
−

3ρββ2

4θρκ̃
−

q2

3k0θρκ̃
> 0, αmp :=

4q2(1 − θ) + 3k0(3 − 4θ)ρββ2

12k0θ
. (3.60)

The stripes are quasi-hex-stable for | κ̃ | < κ̃mp and all α, cf. Fig. 3.3f. Such stable window
‘opens’ later for larger |q | and ‘opens’ larger for larger |β |. The turning points diverge
as θ → 0 and so do the endpoints (±κ̃ep, αep), thus limiting to the hexagonal case, cf.
Fig. 3.8f. In contrast to the hexagonal case, here we have two regions where the stripes are
quasi-hex-unstable but Eckhaus stable.

(4) |β | ≥ βex (Fig. 3.11d): The quasi-hex-stability boundaries touch the Eckhaus boundary
for |β| = βex and lie inside the Eckhaus unstable region.

Notably, in each case the Eckhaus instability is dominant near the bifurcation as predicted in
Remark 3.5.6. We recall the threshold qtp, cf. (3.43) and have sgn(|β | − βtp) = −sgn(|q | − qtp),
also sgn(|β | − βex) = −sgn(|q | − qex), where

qex :=
3
2
|β |

√
k0(2 − θ)ρβ/2,

and qex < qtp. Therefore, by increasing |q | for fixed β , 0 the quasi-hex-stability boundaries
change as from Fig. 3.11d to 3.11a.

3.6 Examples

3.6.1 Exact example: zigzag-unstable stripes

For illustration of the expansions we consider the concrete system

ut = ∆u + 3u − v + α̌u + 4α̌v + βux + ϵu2 +
1
4
ϵv2 − uv2

vt =
7
2
∆v + 14u −

7
2
v −

1
5
α̌u + α̌v + ϵu2 +

1
4
ϵv2 + uv2

(3.61)

where U := (u, v)T , D = diag(1, 7/2),

L =

(
3 −1

14 − 7
2

)
, M =

(
1 4
− 1

5 1

)
, Q[U,U] = ϵ

(
u2 + 1

4v
2

u2 + 1
4v

2

)
, K[U,U,U] =

(
−uv2

uv2

)
.

The generic form of Q is given by Q[U1,U2] = (Q |[U1,U2],Q | |[U1,U2])
T with

Q |[U1,U2] = Q | |[U1,U2] = ϵUT
1

(
1 0
0 1

4

)
U2,

where Uj := (u j, vj)
T , j = 1, 2, 3.
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(a) 0 < |β| < βtp (b) |β | = βtp

(c) βtp < |β | < βex (d) |β | ≥ βex

Figure 3.11: Sketches of the stability boundaries and Eckhaus boundary E for β , 0, q , 0 and
θ ∈ (0, 1]. Stripes exist in the complement of the dark grey regions; light grey: quasi-hex-unstable;
hatched region: Eckhaus-unstable; white: stable. Dashed curve: bifurcation curve α = B(κ̃, β); dotted
curve: α = E(κ̃, β); quasi-hex-boundary for Q = O(ε) (3.50) (black solid), (3.51) (blue solid), quasi-hex-
boundary for Q = o(ε) (3.49) (dashed-dotted). Zigzag instability occurs for κ̃ < 0.

In this system, the Turing conditions are fulfilled and the critical wavevectors (k, ℓ) ∈ Skc

with kc = 1. We have

L̂0 := −k2
c D + L =

(
2 −1

14 −7

)
.

From Remark 3.2.5 the rescaled kernel eigenvector of L̂0 and its adjoint kernel eigenvector are
given by

E0 = −
1
√

5
(1, 2)T , E∗

0 =
1
√

5
(−7, 1)T .

We examine the coefficients in (3.7), (3.11) and (3.26) so that they are non-zero. The bifurcation
curves, zigzag and Eckhaus boundaries are given by, cf. Fig. 3.13,

bifurcation curve: α = −0.112β2 + 2.8κ̃2, (3.62)

Eckhaus boundary: α = −0.112β2 + 8.4κ̃2, (3.63)

zigzag boundary: α = −0.046β2 − 3.118κ̃, (3.64)

where α = 12.24α̌. The striped solutions exist for α > −0.112β2 + 2.8κ̃2. We remark that the
scaling (3.13) gives the zigzag boundary κ̃ = 0 to leading order. In Fig. 3.12 we choose ϵ = 0.5
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Figure 3.12: The leading order of the rescaled striped solution Us (u-component blue, v-component red)
in x ∈ [0, 2π] to the system (1.9) for α = 0.2, β = 0.7, κ̃ = 0.1 and ϵ = 0.5.
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(a) β = 0
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(b) β = 0.7

Figure 3.13: Numerical computations of the leading order Eckhaus and zigzag (in)stability regions of
the stripes for (3.61) in the (κ̃, α)-plane for ϵ = 0.5. Stripes exist in the complement of the blue regions.
Blue lines: bifurcation curves (3.62); green regions: Eckhaus unstable; green lines: Eckhaus boundaries
(3.63); orange regions: zigzag unstable; orange lines: zigzag boundaries (3.64); white regions: stable
stripes. (a) β = 0. (b) β = 0.7. In (a) the zigzag boundary is attached to the origin, whereas in (b)
the origin is stable, but advection shifts attachment point of the zigzag boundary to the right; M , Id
destabilises the stripes near κ̃ = 0.

and plot the leading order form of a stripe based on (3.10) for α = 0.2, β = 0.7 and κ̃ = 0.1,
which gives the velocity parameter c = −1.4.

The advection term shifts the bifurcation curve and the Eckhaus boundary downwards since
the coefficient of β2 are both negative in (3.62) and (3.63), cf. Fig. 3.13. Thus the advection
stabilises the large wavelength perturbations in the x-direction.

The negative coefficient of κ̃ in (3.64) adds a negative value to the slope of the zigzag
boundary, cf. Fig. 3.13, where we choose ϵ = 0.5. The negative coefficient of β2 shifts the
zigzag boundary to the left. Hence the advection stabilises the large wavelength perturbations
in the y-direction for any α > 0. Since the coefficient of β2 in (3.64) is larger than that of
(3.62), however, there exists a zigzag unstable region near the bifurcation curve and for κ̃ > 0,
cf. Fig. 3.5c. We plot the resulting curves in Fig. 3.13b. In particular, the width of this unstable
region is of order β2. Hence the advection destabilises the large wavelength perturbations in the
y-direction at the onset of Turing bifurcation. This can also be seen from the positive coefficient
of β2 in (3.28).
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(c) β = 0.378
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(d) β = 0.39
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(e) β = 0.56

Figure 3.14: Numerical computations based on the analytic leading order formulae of the leading order of
instability regions and boundaries of the stripes for (3.61) in the (κ̃, α)-plane for ϵ = 0.4. Stripes exist in
the complement of the blue regions. Bifurcation (3.62) (blue); Eckhaus boundaries (3.63) (green, unstable
below); zigzag boundaries (unstable to the left) κ̃ = 0 (orange); grey regions: most quasi-square-unstable
(ℓ̃ = 0); red regions: hex-unstable; pink regions: most quasi-hex-unstable (ℓ̃ = −κ̃/3); otherwise stable.
Here q = −0.215. (b) β ∈ (0, βtp). (c) β = βtp (d) β ∈ (βtp, βex). (e) β > βex.

Fig. 3.14 illustrates the stabilities of stripes against the lattice modes. We consider the most
unstable quasi-square mode (i.e., ℓ̃′ = 0, cf. (3.35)), hexagonal mode and the most unstable
quasi-hexagonal mode (i.e., ℓ̃′ = −κ̃′/3, cf. Lemma 3.5.16). The quadratic coefficient q is
linearly dependent on the coefficient ϵ so that q = −0.537ϵ . We choose ϵ = 0.4, which leads to
q = −0.215. The critical value βtp ≈ 0.378 (cf. (3.47)) is such that the quasi-hex-stable window is
‘open’ and the hex-unstable band vanishes for β > βtp. The critical value βex ≈ 0.535 (cf. (3.59)
with θ = 1 most unstable) is such that the quasi-hex-unstable regions are completely covered by
the Eckhaus-unstable regions for β > βex. The quasi-hexagonal mode is more unstable than the
quasi-square and hexagonal modes.

In Fig. 3.15 the stability of stripes against quasi-/hexagonal perturbations are depicted. For
convenience, and with some abuse of notation we use the coefficient ϵ as the horizontal axis
rather than the quadratic coefficient q. The opening threshold βep ≈ 0.577 (cf. (3.56) with θ = 1
most unstable) is such that the quasi-hex-stable window is ‘open’ for β > βep. In particular, the
hex-stable window is ‘open’ for β > 0. The quasi-hexagonal mode is more unstable than the
hexagonal one.
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Figure 3.15: Numerical computations based on the analytic leading order formulae of the leading order of
hex- and quasi-hex-instability regions and boundaries of the stripes for (3.61) in the (ϵ, α)-plane. Colors
as in Fig. 3.14. The off-critical parameter κ̃ = 0.1. (b) β ∈ (0, βep). (c) β > βep.

3.6.2 Numerical example: extended Klausmeier model

The extended Klausmeier in two-dimensional space [28, 59] is a two-component model for
studying vegetation patterns on the earth’s surface in drylands. In scaled form it is given by:

ut = d∆u + βux + a − u − uv2,

vt = ∆v − mv + uv2.
(3.65)

The isotropic spread of (surface) water u is modelled by d∆u, downhill flow by βux , precipitation
by a and evaporation by−u. The uptake of water by vegetation±uv2 is quadratic in the vegetation
to model enhanced water infiltration at locations with vegetation. Vegetation dispersal is modelled
by ∆v and mortality by −mv. We fix the parameters to customary values d = 500 and m = 0.45
and investigate how (small) advection impacts the patterns by ‘brute force’ computing them and
their stability against large-wavelength instabilities with pde2path [63]. For this we choose β = 0
or 50 or 100, which are relatively small values [59]. The parameter a is chosen so that the system
is near Turing(-Hopf) instability.

A spatially homogeneous steady state is given by (u, v) = (a, 0) and for a ≥ 2m there are two
more:

u±(a) =
2m2

a ±
√

a2 − 4m2
, v±(a) =

a ±
√

a2 − 4m2

2m
.

From these two, only (u+, v+) is stable against spatially homogeneous perturbations, and becomes
Turing(-Hopf) unstable when a drops below a critical value.

In Fig. 3.16 the large-wavelength stability of stripes near onset is depicted. Contrary to
the previous example, for increasing advection β the zigzag boundary shifts to the left of the
Turing(-Hopf) instability, so in this case the stripes with critical wavenumber that emerge are
zigzag-stable.
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Figure 3.16: Eckhaus and zigzag (in)stability regions of the stripes for (3.65) in the (κ, a)-plane, by
numerically checking the spectrum on an equidistant grid with spacing between neighbouring grid points
of a = 0.0001 and κ = 0.0001. Stripes exist in the complement of the blue region; green regions: Eckhaus
unstable; orange regions: zigzag unstable. (a) β = 0. (b) β = 50. (c) β = 100. In (a) the zigzag boundary
is attached to the Turing instability locus and visually vertical, whereas in (b) and particularly (c) the
zigzag boundary has shifted and tilted to the left.

3.6.3 Further analysis of extended Klausmeier model

We analyse the bifurcation and various stability boundaries of (3.65) for relatively small ad-
vection, e.g. β < 1. The results are based on the analytic leading order formulae in this
thesis.

We first transform (3.65) into the framework of (1.9). Since (u+, v+) is a function of a, we
consider u = u+ + ũ, v = v+ + ṽ such that the equilibrium is shifted to (ũ, ṽ) = (0, 0). Removing
the ‘tilde’ yields

ut = d∆u − (1 + v2
+)u − 2mv + βux − 2v+uv − u+v2 − uv2,

vt = ∆v + v
2
+u + mv + 2v+uv + u+v2 + uv2,

(3.66)

where the linear matrix, quadratic and cubic forms are given by

L̃ =

(
−1 − v2

+ −2m
v2
+ m

)
, Q[U,U] =

(
−2v+uv − u+v2

2v+uv + u+v2

)
, K[U,U,U] =

(
−uv2

uv2

)
,

with U := (u, v)T . In particular, the generic form of Q is given by

Q[U1,U2] = (Q |[U1,U2],Q | |[U1,U2])
T

with

−Q |[U1,U2] = Q | |[U1,U2] = UT
1

(
0 v+

v+ u+

)
U2,

where Uj = (u j, vj)
T , j = 1, 2. Since the Turing bifurcation occurs at a = aT ≈ 2.883 [59],

expanding L̃ near a = aT yields

L̃ = L̃(a) = L̃(aT ) + ∂a L̃(aT )(a − aT ) + O((a − aT )2).
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Figure 3.17: Numerical computations based on the analytic leading order formulae of the leading order of
Eckhaus and zigzag (in)stability regions and boundaries of the stripes for (3.65) in the (κ̃, α)-plane. Stripes
exist in the complement of the blue regions. Blue lines: bifurcation curves (3.67); green regions: Eckhaus
unstable; green lines: Eckhaus boundaries (3.68); orange regions: zigzag unstable; orange lines: zigzag
boundaries (3.69); white regions: stable stripes. (a) β = 0. (b) β = 0.7. (c) and (d) are the magnifications
of (a) and (b) near the origin, respectively. In (a) the zigzag boundary is attached to the origin, whereas in
(b) the advection shifts attachment point of the zigzag boundary to the left so that stripes are zigzag-stable
near onset.

In terms of the notations in (1.9), we denote L := L̃(aT ), M := ∂a L̃(aT ) and α̌ := a − aT . The
higher order term O(α̌2) is not relevant to the analysis in this thesis, so we omit it. Therefore,
we transform (3.65) into the framework of (1.9), and the analysis of (1.9) for ‘sufficiently small’
α̌, β can be applied to (3.65). We list the leading order of the existence, zigzag and Eckhaus
boundaries of the extended Klausmeier model (3.65) for small µ as follows (α ≈ −0.137α̌).

bifurcation curve: α ≈ −2.81 × 10−6β2 + 8.39κ̃2, (3.67)

Eckhaus boundary: α ≈ −2.81 × 10−6β2 + 2.80κ̃2, (3.68)

zigzag boundary: α ≈ −2.38 × 10−5β2 − 3.09κ̃. (3.69)

The advection shifts the bifurcation curve and the Eckhaus boundary downwards, and shifts the
zigzag boundary to the left, cf. Fig. 3.17. Notably, the zigzag boundary has a negative slope and
it is true for β = 0 as well, cf. Fig. 3.17 (lower row) . This can also be seen from Fig. 3.16a that
the zigzag boundary is not precisely vertical.



Chapter 4

Outlook

In this chapter, we outline possible future research topics.

4.1 Further analysis of reaction-subdiffusion equations

There are many problems are still open in the reaction-subdiffusion equations discussed in this
thesis. So we would like to extend the results in Chapter 2 as follows.

Theorem 2.4.5 shows that the Fourier modes algebraically decay and exponentially grow for
stable and unstable (pseudo-)spectrum, respectively. This verifies that the equilibrium of (2.36)
does not have exponential dichotomy which is a characteristic of an equilibrium that extends the
idea of hyperbolicity to non-autonomous systems (without fractional derivative). The expansions
û(q, t) in Theorem 2.4.5, however, can be phrased as the decomposition into spaces with different
growth and decay, which are analogous to the eigenspaces in linear systems. This may provide a
direction of extending the idea of exponential dichotomy to fractional differential equations.

In both Theorem 2.4.5 & 2.5.4 the decay and growth of Fourier modes is obtained only
for rational anomalous exponent γ. This limitation comes from the computation of the inverse
Laplace transform. Relaxing this limitation, i.e., for irrational γ, will lead to the following
problem: for any fixed wavenumber, there are infinitely many solutions to the dispersion relation
and these solutions form certain curves, thus one cannot choose a branch cut which does not
pass through any singularities, and any auxiliary contours also pass through the singularities.
Therefore, the ILT for irrational γ may be a future work.

Theorem 2.4.5 & 2.5.4 give the decay and growth of Fourier modes only. The dynamics of
the solutions in physical space is an open problem. The difficulty is that the coefficients Cexp,
Calg, Cbp are dependent on the wavenumber implicitly, thus their ILT are complicated. A possible
solution is to prove that these coefficients behave like −q2 which happens for the heat equations,
or are uniformly bounded by the initial condition û(q, 0). Then the L2-norm of the solution to the
reaction-subdiffusion equations can be estimated by Plancherel’s theorem, cf. Theorem A.1.1.
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In §2.6 we study the nonlinear reaction-subdiffusion equation (1.7) and its linearisation (1.8).
However, the stability of solutions to (1.8) is still an open problem. The possible directions could
be: extending the energy estimate (Theorem 2.6.1) and decaying estimate (Theorem 2.6.7) such
that the estimates are available for all t > 0; proving the existence and uniqueness of the classical
solution to (2.67); analysing the stability of the solution to (1.8) using comparison principle.

The dynamics of the reaction-subdiffusion equations is an open problem. Since they are not
dynamical systems on the phase space of the natural initial condition u(x, 0), one needs to find
suitable function spaces with appropriate initial conditions in which the reaction-subdiffusion
equations are dynamical systems.

4.2 Turing-type systems coupled to ODE

In Chapter 2 we consider the Turing instability in reaction-diffusion systems in a subdiffusive
medium. In particular, in (2.2) the spectrum is close to zero for large wavenumber, which
differs from that of RD systems, and such spectrum is caused by the ‘slow’ diffusive process.
It would be natural to ask what happens to the spectrum if one of the components has zero
diffusion, e.g. as a toy model: the SH equation coupled to an ODE. Indeed, the spectrum of such
system has aforementioned property. In this case, the stability of a homogeneous state against
high-frequency perturbations may differ from that of the Turing-type systems which possesses
parabolicity.

Since the spectrum is close to zero for large wavenumber, the selection of the wavenumber
may be different and this leads to the next analyses – the bifurcations of different types of
patterns and their stabilities. Due to the continuation of the spectrum, the bifurcating patterns
may be unstable against high-frequency wavenumber. Therefore, in one-dimensional space,
the sideband modes might not be the dominant instability mechanism. Moreover, one can add
the advection term into such systems, e.g., the Klausmeier model [28] – one component has
diffusion and another one does not but has advection. However, our expected model would be
more complicated than the Klausmeier model, since our model is composed of a RD system and
an ODE which is at least a three-component system.

4.3 Bifurcation and stability of oblique stripes

In Chapter 3 we only consider the existence and stability of the primary bifurcating stripes,
i.e., the stripes orthogonal to the direction of the advection. However, the stripes which are at
an oblique angle to the advection may also bifurcate thereafter. Such oblique striped solutions
have been studied via the amplitude equations with weak anisotropy in the context of Bénard
convection [6]. The oblique stripes have also been considered as a result of a growing domain in
the context of isotropic SH equation [17]. However, we are not aware of any further analysis of
oblique stripes in planar RD systems with weak anisotropy.
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It would be natural to extend the methodology used in this thesis to the study of oblique stripes.
The existence of the oblique stripes may be studied by using Lyapunov-Schmidt reduction which
can provide a rigorous parameter expansion. A foreseeable difficulty would be that, however, it is
not sufficient to only consider the stripes in one-dimensional space as we did in this thesis since
the oblique stripes are periodic in both directions. One may resolve this problem by changing
coordinates so that the oblique effect can be transferred from the stripes to the advection. As a
result, however, the advection would depend on both spatial variables. Therefore, it is uncertain
about which approach is easier to be handled up to now.

Analogous to the analyses in this thesis, the study of the stability of oblique stripes against
the large-wavelength and lattice modes would naturally be the next step. Unlike the orthogonal
stripes, in the presence of the advection, the oblique stripes and hexagons can bifurcate syn-
chronously near the onset in certain domains, e.g. Ω3 = [0, 4π] × [0, 4π/

√
3]. So the question

would be that which pattern would bifurcate stably therein. Moreover, the stability of orthogonal
stripes against aforementioned oblique stripes may also be worth to analyse.

4.4 Subcritically bifurcating stripes

In Chapter 3 the stripes bifurcate supercritically from the homogeneous state if ρnl < 0. Notably,
the stripes bifurcate subcritically if ρnl > 0. It has been shown that the subcritically bifurcating
stripes are unstable near the onset, e.g. in the context of vegetation patterns [74]. However, if
ρnl = 0, then one has to consider the higher order terms in the bifurcation equation, cf. (3.8).
Analogous to the analyses in this thesis, the stability of this type of bifurcating stripes (not
pitchfork) against various perturbations may be a future topic.





Appendix A

Prerequisites

A.1 Fourier transform

We recall the definition of the Fourier transform and its inversion, and briefly introduce their
properties. We refer to [12] for more details.

The Fourier transform is an integral transform for f (x) where the variable x ∈ Rn, x =
(x1, . . . , xn) represents the n-dimensional space in this thesis. The Fourier transform of the
integrable function f (x), denoted by f̂ (q) or (F f )(q), is defined by

f̂ (q) = F[ f (x)](q) =
∫
Rn

f (x)e−iqxdx, q ∈ Rn, (A.1)

and the inverse Fourier transform is defined by

f (x) = F−1[ f̂ (q)](x) =
1

(2π)n

∫
Rn

f̂ (q)eiqxdq, x ∈ Rn.

The following theorem shows that the Fourier transform is an isometry with respect to the
L2-norm.

Theorem A.1.1 (Plancherel’s theorem). Assume f ∈ L1(Rn) ∩ L2(Rn), then f , f̂ ∈ L2(Rn) and

∥ f ∥L2(Rn) = ∥ f̂ ∥L2(Rn).

Next, we list some properties of the Fourier transform which are used in this thesis.

• Linearity: F[a f (x) + bg(x)](q) = a f̂ (q) + bĝ(q).

• Gradient: F[∇ f (x)](q) = −iq f̂ (q), ∇ := (∂x1, . . . , ∂xn ).

• Laplacian: F[∆ f (x)](q) = −|q |2 f̂ (q), where ∆ := ∂2
x1 + · · · + ∂

2
xn

.

• Convolution: F[( f ∗ g)(x)](q) = f̂ (q) · ĝ(q), where ( f ∗ g)(x) :=
∫
Rn

f (y)g(x − y)dy.
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A.2 Laplace transform

We recall the definition of the Laplace transform and its inversion, and briefly introduce their
applications to the fractional integral and derivative for the preparation. We refer to [27, 35, 61]
for more details.

The Laplace transform is an integral transform for f (t) where the variable t usually takes
positive real values, e.g. t represents time in this thesis. The Laplace transform of the integrable
function f (t), denoted by f̃ (s) or (L f )(s), is defined by

f̃ (s) = (L f )(s) = L[ f (t)](s) =
∫ ∞

0
f (t)e−stdt . (A.2)

The following theorem gives the sufficient condition for the existence of the Laplace transform.

Theorem A.2.1 (Existence of Laplace transform). If f (t) is sectionally continuous in every finite
interval 0 ≤ t ≤ N and of exponential order c ∈ R, i.e., | f (t)| ≤ Aect with A > 0, for t > N ,
then its Laplace transform (L f )(s) exists for all s > c.

Next, we list some properties of the Laplace transform which are used in this thesis.

• Linearity: L[a f (t) + bg(t)](s) = a f̃ (s) + bg̃(s).

• Exponential function: L[eat ](s) = 1
s−a .

• Shift: L[eat f (t)](s) = f̃ (s − a).

• Differentiation: L[ f ′(t)](s) = s f̃ (s) − f (0), where ′ := d/dt.

• Integration: L[
∫ t

0 f (τ)dτ](s) = f̃ (s)/s.

• Convolution: L[( f ∗ g)(t)](s) = f̃ (s) · g̃(s), where ( f ∗ g)(t) :=
∫ t

0 f (τ)g(t − τ)dτ.

If the Laplace transform of a function f (t) is f̃ (s), i.e., (L f )(s) = f̃ (s), then f (t) is called
an inverse Laplace transform (ILT) of f̃ (s) and denoted by f (t) = (L−1 f̃ )(t) and given for t > 0
by the formula

f (t) = (L−1 f̃ )(t) =
1

2πi

∫ c+i∞

c−i∞
f̃ (s)estds.

It is known as Bromwich’s integral formula.

A.3 Wright function

The Wright function is defined by the series [27, Section 1.11]

W(a, b; z) :=
∞∑
n=0

1
Γ(an + b)

zn

n!
, a, b, z ∈ C. (A.3)



A.3. Wright function 101

If a > −1, this series is absolutely convergent for all z ∈ C and it is an entire function of z.
Hence, this series is uniformly convergent within |z | < R, where R is any positive constant. The
derivatives with respect to z is given by

dn

dzn
W(a, b; z) =W(a, a + nb; z), n ∈ N.

Concerning the Green’s function (2.31), we have, with µ := γ/2 ∈ (0, 1/2),

Φ(x, t) =
1

√
4dtγ

∞∑
n=0

(−1)n

n!Γ
(
1 −

γ
2 −

γ
2 n

) (
|x |

√
dtγ

)n
=

t−µ

2
√

d
W

(
−µ, 1 − µ;−

|x |
√

d
t−µ

)
,

and Φ(x, t) > 0 for any t > 0, x ∈ R [32, Eq. 4.26-a]. Since the Wright function in Φ(x, t) is
uniformly convergent for t > (|x |/(R

√
d))1/µ, we can interchange the limit and sum for compact

set of x, yields

lim
t→∞

Φ(x, t)
t−µ

= lim
t→∞

1
2
√

d
W

(
−µ, 1 − µ;−

|x |
√

d
t−µ

)
=

1
2
√

d

(
1

Γ(1 − µ)
+

∞∑
n=1

lim
t→∞

(−1)n

n!Γ
(
1 −

γ
2 −

γ
2 n

) (
|x |

√
dtγ

)n)
=

1
2
√

dΓ(1 − µ)
,

so the Green’s function Φ(x, t) ∼ (2
√

dΓ(1 − µ)tµ)−1 is algebraically decaying locally uniformly
in x for t → ∞.

Concerning the derivatives of Φ with respect to t, we have

∂tΦ =
−µ

2
√

d
t−µ−1W

(
−µ, 1 − µ;−

|x |
√

d
t−µ

)
+

|x |µ
2d

t−2µ−1W

(
−µ, 1 − 2µ;−

|x |
√

d
t−µ

)
,

∂2
t Φ =

µ(µ + 1)
2
√

d
t−µ−2W

(
−µ, 1 − µ;−

|x |
√

d
t−µ

)
+

|x |(−3µ2 − µ)

2d
t−2µ−2W

(
−µ, 1 − 2µ;−

|x |
√

d
t−µ

)
+

|x |2µ2

2d3/2 t−3µ−2W

(
−µ, 1 − 3µ;−

|x |
√

d
t−µ

)
.

The limit of Wright functions for t → ∞ are obtained as follows

lim
t→∞

W

(
−µ, 1 − jµ;−

|x |
√

d
t−µ

)
=

1
Γ(1 − jµ)

, j ∈ N.

Moreover, Φ(x, t) has the following asymptotic representation for |x |/(
√

dtµ) → ∞ [32, Eq.
4.27],

Φ(x, t) ∼
t−µ

2
√

d
A0Yµ−1/2 exp(−Y ),

A0 = (
√

2π(1 − µ)µµ2µ−1)−1, Y = (1 − µ)(µµ |x |t−µ/
√

d)1/(1−µ).

Therefore,Φ(x, t) is algebraically decaying in t for |x | ≫
√

dtµ with power−µ/(2−2µ) ∈ (−µ, 0).
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Inverse Laplace transform

B.1 Inverse Laplace transform with zero branch point

This proof relies on calculating the ILT with zero branch point, but where no roots of the
dispersion relation are on the branch point at the origin.

For any fixed q, the Fourier-Laplace solution Lû = (Lû1,Lû2) of (2.35) can be written as

Lû1(q, s) =
(s + sℓ/mdq2 − a4)û1(q, 0) + a2û2(q, 0)

(s + sℓ/mq2 − a1)(s + sℓ/mdq2 − a4) − a2a3
=: Ψ(s), (B.1)

cf. [22]. It suffices to discuss Lû1(q, s) and we suppress the subscript for convenience.
The denominator of (B.1) is the subdiffusion dispersion relation (2.37), where ℓ/m = δ =

1− γ, ℓ < m, and ℓ, m ∈ N without loss coprime. Here z ↦→ Ψ(zm) is rational with denominator
of degree 2m thus giving 2m poles zj , 0, j = 1, . . . , 2m.

First, we assume that all poles are simple, so there are αj ∈ C, such that

Ψ(s) =
2m∑
j=1
Ψj(s), Ψj(s) :=

αj

s1/m − zj
, j = 1, 2, . . . , 2m.

The formula of the ILT gives

û(q, t) =
2m∑
j=1

Uj(q, t), Uj(t) :=
1

2πi

∫ c+i∞

c−i∞
Ψj(s)estds, j = 1, 2, . . . , 2m,

where c > 0 is chosen to the right of the finitely many singularities. For the ILT of Ψj , we take
a modified Bromwich contour with branch cut Bθ1

0 , cf. Fig. B.1, so that

Uj(t) =
1

2πi

∫ c+i∞

c−i∞
Ψj(s)estds =

1
2πi

lim
T→∞

∫
I A

Ψj(s)estds

=
1

2πi

(
lim
R→∞
ϵ→0

∮
Γ

− lim
R→∞

∫
ABCD

− lim
R→∞
ϵ→0

∫
DE+FG

− lim
ϵ→0

∫
EF

− lim
R→∞

∫
GHI

)
Ψj(s)estds.
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Figure B.1: Notation and geometry of the integration contours.

We split the integration along the closed contour Γ as follows.

Along EF: With s = ϵeiθ , ds = iϵeiθdθ, limϵ→0 Ψj(ϵeiθ) = −αj/zj independent of θ, we have

1
2πi

lim
ϵ→0

∫
EF

Ψj(s)estds =
1

2πi
lim
ϵ→0

∫ −π+θ1

π+θ1

Ψj

(
ϵeiθ

)
eϵeiθ t · iϵeiθdθ = 0.

Along ABCD and GHI: We claim |Ψj(Reiθ)| ≤ M/R1/m with M independent of R. Substituting
s = Reiθ into Ψj(s) yields (cf. [61, p. 212])��Ψj(Reiθ)

�� = ���� αj

(Reiθ)1/m − zj

���� = ��αj

�� ���� 1
R1/meiθ/m

���� ���� 1
1 − zj(Reiθ)−1/m

���� .
For sufficiently large R we have���1 − zj(Reiθ)−1/m

��� ≥ 1 −

���zj(Reiθ)−1/m
��� = 1 −

��zj �� R−1/m ≥ 1/2,

so
��zj �� R−1/m ≤ 1/2, which means R ≥ (2

��zj ��)m and��Ψ(Reiθ)
�� ≤ 2|αj |/R1/m ≤ M/R1/m.

It follows that limR→∞

∫
ABCD

Ψj(s)estds = 0 and limR→∞

∫
GHI
Ψj(s)estds = 0, cf. [61, Theo-

rem 7-1].
Along DE and FG: s = rei(π+θ1) = −reiθ1 , s1/m = r1/mei(π+θ1)/m, ds = −eiθ1dr , yields

1
2πi

lim
R→∞
ϵ→0

∫
DE

Ψj(s)estds =
eiθ1

2πi
lim
R→∞
ϵ→0

∫ R

ϵ
Ψj

(
rei(π+θ1)

)
e−reiθ1 tdr =: IDE .

Analogously, s = rei(−π+θ1) = −reiθ1 , s1/m = r1/mei(−π+θ1)/m, ds = −eiθ1dr , yields

1
2πi

lim
R→∞
ϵ→0

∫
FG

Ψj(s)estds = −
eiθ1

2πi
lim
R→∞
ϵ→0

∫ R

ϵ
Ψj

(
rei(−π+θ1)

)
e−reiθ1 tdr =: IFG .
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Combining IDE with IFG gives

IDE + IFG =
eiθ1

2πi
lim
R→∞
ϵ→0

∫ R

ϵ
fj(r)e−reiθ1 tdr,

where fj(r) := Ψj

(
rei(π+θ1)

)
− Ψj

(
rei(−π+θ1)

)
and limϵ→0 fj(ϵ) = limR→∞ fj(R) = 0. Recall

θ1 = θ1(q). Since there is no pole on Bθ1
0 for any fixed q, fj(r) is bounded, i.e.,

�� fj(r)�� ≤ G j,γ for
r ∈ [0,∞), where G j,γ > 0 is a constant for fixed γ. Hence,

|IDE + IFG | ≤
1

2π
lim
R→∞
ϵ→0

∫ R

ϵ
G j,γe−rt cos(θ1)dr =

G j,γ

2πt cos(θ1)
= O(t−1).

We refine this estimate as follows. For any r0 > 0, we have
∫ ∞

r0
fj(r)e−reiθ1 tdr ≤ Ct−1e−r0t cos θ1

for a constant C. Taylor expansion in r = 0 gives

fj(r) = Ar1/m + O(r2/m), A := −
αj

z2
j

eiθ1/m2i sin(π/m).

Therefore, ∫ r0

0
fj(r)e−reiθ1 tdr =

∫ r0

0
Ar1/me−reiθ1 tdr + O

(∫ r0

0
r2/me−reiθ1 tdr

)
. (B.2)

For any α, β with α > 0,Re(β) > 0 we have, as t → ∞, that∫ r0

0
rαe−βrtdr = (βt)−1−α

∫ βr0t

0
wαe−wdw

= (βt)−1−α
(∫ ∞

0
wαe−wdw −

∫ ∞

βr0t
wαe−wdw

)
= (βt)−1−α

Γ(1 + α) + O(t−1e−βr0t ).

Application to the right-hand side of (B.2) and combination with the previous gives

IDE + IFG = −
αj

z2
j

sin(π/m)

π
Γ(1 + 1/m)t−1−1/m + O(t−1−2/m). (B.3)

Along Γ: If zmj < Ω0, i.e., there is no pole inside Γ for any ϵ, R, then Cauchy’s integral theorem
gives

1
2πi

lim
R→∞
ϵ→0

∮
Γ

Ψj(s)estds = 0.

If zmj ∈ Ω0, the residue theorem gives,

1
2πi

lim
R→∞
ϵ→0

∮
Γ

Ψj(s)estds =
1

2πi
lim
R→∞
ϵ→0

∮
Γ

αj

s1/m − zj
estds = Res

s=zmj

(
αj

s1/m − zj
est

)
= lim

s→zmj

αj

s1/m − zj
est

(
s − zmj

)
= αjmzm−1

j etz
m
j .
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Now, we determine the coefficients αj . Denote P(s) and Q(s) the numerator and denominator
of Ψ(s), respectively, i.e.,

Ψ(s) =
P(s)
Q(s)

=

2m∑
j=1

αj

s1/m − zj
,

and Q(s) is the dispersion relation. Fix j, multiply both sides by s1/m − zj and let s → zmj . Then
all the terms vanish except j-th term, which yields

lim
s→zmj

P(s)
Q(s)

(s1/m − zj) = αj .

By L’Hôpital’s rule lims→zmj

s1/m−z j
Q(s) = lims→zmj

1
Q′(s)ms1−1/m where ′ := d/ds, so together

lim
s→zmj

P(s)
Q(s)

(s1/m − zj) = lim
s→zmj

P(s)
Q′(s)ms1−1/m ⇒ αj =

P(zmj )

Q′(zmj )mzm−1
j

.

All in all we infer the solution in Fourier space can be written as

û(q, t) =
∑

zmj ∈Ω0

P(zmj )

Q′(zmj )
ez

m
j t

−
eiθ1

2πi

2m∑
j=1

∫ ∞

0
fj(r)e−reiθ1 tdr

= Cexpes∗t + Calg t−1−1/m + O(t−1−2/m). (B.4)

Here s∗ = argmax{Re(zmj ) : zmj ∈ Ω0, P(zmj ) , 0} for the largest exponential rate, Cexp =

(P/Q′)(s∗) , 0 for almost all initial conditions since both coefficients of P(s) with respect to the
initial conditions are nonzero (neither vanishes at roots of Q). Moreover, for the algebraic rate
we have

Calg := −
sin(π/m)

π
Γ(1 + 1/m)

2m∑
j=1

αj

z2
j

= −
sin(π/m)

π
Γ(1 + 1/m)

2m∑
j=1

P(zmj )

Q′(zmj )mzm+1
j

.

Second, we consider the case which poles are not all simple. Ψ(s) can be written as

Ψ(s) =
∑
j

k j∑
k=1
Ψjk, Ψjk :=

αjk(
s1/m − zj

)k ,
where k j denotes the multiplicity of zj and

∑
j k j = 2m. Similarly, we compute ILT for each

Ψjk . The integral along each arc tends to 0 as ϵ → 0 and R → ∞. Along DE and FG:

IDE + IFG =
eiθ1

2πi
lim
R→∞
ϵ→0

∫ R

ϵ
fjk(r)e−reiθ1 tdr,

where fjk = Ψjk

(
rei(π+θ1)

)
− Ψjk

(
rei(−π+θ1)

)
. Similarly, we obtain

IDE + IFG = −
αjk k(−zj)k−1

z2k
j

sin π/m
π
Γ(1 + 1/m)t−1−1/m + O(t−1−2/m).
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Along Γ, if zj < Ω0, then the integral along Γ vanishes. If zj ∈ Ω0, then

1
2πi

lim
R→∞
ϵ→0

∮
Γ

Ψjk(s)estds =
1

2πi
lim
R→∞
ϵ→0

∮
Γ

αjk

(s1/m − zj)k
estds = Res

s=zmj

(
αjk(

s1/m − zj
)k est

)
= lim

s→zmj

1
(k − 1)!

(
d
ds

)k−1
(
αjk(s − zmj )

k

(s1/m − zj)k
est

)
= lim

s→zmj

αjk

(k − 1)!

(
d
ds

)k−1 ©­«
(
m−1∑
n=0

s
m−n−1

m znj

)k
estª®¬

= lim
s→zmj

αjkest
k−1∑
p=0

tk−1−p

p!(k − 1 − p)!

(
d
ds

)p (
m−1∑
n=0

s
m−n−1

m znj

)k
.

Now we determine the coefficient αjk . Define gjk(z) = (z − zj)k−1Ψ(zm) where z = s1/m, so αjk

is the coefficient of (z − zj)−1 in Laurent expansion of gjk(z) evaluated at z = zj . Hence αjk is
the residue of gjk(z) at z = zj and, zj is the pole of gjk(z) with multiplicity k j − k + 1. Therefore
we have

αjk = Res
z=z j

gjk(z) = Res
z=z j

(z − zj)k jΨ(zm)

(z − zj)k j−k+1

=
1

(k j − k)!
lim
z→z j

(
d
dz

)k j−k (
(z − zj)k jΨ(zm)

)
(B.5)

Note that this formula generalises the case of simple pole, i.e., αjk = αj for k j = k = 1. In
particular, by assumption on the multiplicity, αjk j , 0.

Finally, we obtain the solution in Fourier space as the following

û(q, t) =
∑

zmj ∈Ω0

k j∑
k=1

lim
s→zmj

αjkest
k−1∑
p=0

tk−1−p

p!(k − 1 − p)!

(
d
ds

)p (
m−1∑
n=0

s
m−n−1

m znj

)k

−
∑
j

k j∑
k=1

eiθ1

2πi

∫ ∞

0
fjk(r)e−reiθ1 tdr

= Cmulti
exp tk j−1es∗t + Cmulti

alg t−1−1/m + O

(
t−1−2/m + tk j−2eRe(s∗)t

)
. (B.6)

Here s∗ = argmax{Re(zmj ) : zmj ∈ Ω0, Cmulti
exp , 0} for the largest exponential rate. The

coefficients are given by

Cmulti
exp :=

αjk j

(k j − 1)!
(mzm−1

j )k j , 0,

Cmulti
alg := −

sin(π/m)

π
Γ(1 + 1/m)

∑
j

k j∑
k=1

αjk k(−zj)−k−1.

If Cmulti
alg , 0, then û decays algebraically for Re(s∗) < 0. If Cmulti

exp , 0 and Re(s∗) > 0, then û
grows exponentially.
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B.2 Inverse Laplace transform with nonzero branch points

In the following, we omit some parts that are very similar to parts of the proof of Theorem 2.4.5,
see Appendix B.1.

We consider the ILT of Lŵj , j = 1, 2 for fixed q, and only discuss Lŵ1(q, s); we suppress
the subscript for convenience. If all roots (except s = µ1, µ2) are simple for Dca(z1, z2, q2), then
the solution Lŵ can be written as

Ψ(s) :=

(
s − µ2 + d4q2(s − µ2)

n
m

)
ŵ1(q, 0) − d2q2(s − µ2)

n
m ŵ2(q, 0)(

s − µ1 + d1q2(s − µ1)
n
m

) (
s − µ2 + d4q2(s − µ2)

n
m

)
− (s − µ1)

n
m (s − µ2)

n
m d2d3q4

=

m−n∑
j=1

(
αj

(s − µ1)
1
m − ξj

+
βj

(s − µ2)
1
m − ηj

)
+

n∑
k=1

(
φk

(s − µ1)
k
m

+
ψk

(s − µ2)
k
m

)
=

m−n∑
j=1

(
Ψ1j(q, s) + Ψ2j(q, s)

)
+

n∑
k=1

(Ψ3k(q, s) + Ψ4k(q, s)),

where Ψ1j(s) := αj

(s−µ1)1/m−ξj
, etc. The ILT gives

ŵ(q, t) =
1

2πi

∫ c+i∞

c−i∞
Ψ(s)estds

=
1

2πi

m−n∑
j=1

∫ c+i∞

c−i∞

(
Ψ1j(s) + Ψ2j(s)

)
estds +

1
2πi

n∑
k=1

∫ c+i∞

c−i∞
(Ψ3k(s) + Ψ4k(s)) estds

=

m−n∑
j=1

(I1j + I2j) +

n∑
k=1

(I3k + I4k) = I1 + I2 + I3 + I4,

where I1j := 1
2πi

∫ c+i∞
c−i∞ Ψ1j(s)estds, I1 :=

∑m−n
j=1 I1j , etc.

We have |Ψ1j | < M/R1/m for R > 0 and suitable constant M > 0 since multiplication with
R1/m, gives denominator |(eiθ − R−1µ1)

1/m − ξjR−1/m)|, which is continuous in R and nonzero
at R = ∞.

Case cc: We first calculate I1j and choose the branch cut B−θ1
µ1 . The corresponding principal

branch is Ω1 := {s ∈ C \ {µ1} : arg(s − µ1) ∈ (−π − θ1, π − θ1), θ1 ∈ (0, π/2)}, cf. Fig. B.2a.
The integral I1j can be written in the form of

I1j =
1

2πi
lim
R→∞

∫
I A

Ψ1j(s)estds

=
1

2πi

(
lim
R→∞
ϵ→0

∮
Γ

− lim
R→∞

∫
ABC

− lim
R→∞
ϵ→0

∫
CD+EF

− lim
ϵ→0

∫
DE

− lim
R→∞

∫
FGHI

)
Ψ1j(s)estds,

Since
��Ψ1j(s)

�� < M/R1/m, the integrals along ABC, FGHI vanish. Similar to the proof of
Theorem 2.4.5, the integral along DE vanishes as well.
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(a) (b)

Figure B.2: Notation and geometry of the integration contours for case cc.

Along CD: s − µ1 = rei(π−θ1) = −re−iθ1 , ds = −e−iθ1dr; along EF: s − µ1 = rei(−π−θ1) =

−re−iθ1 , ds = −e−iθ1dr . Then we have

ICD :=
1

2πi
lim
R→∞
ϵ→0

∫
CD

Ψ1j(s)estds =
1

2πi

∫ ∞

0
Ψ1j

(
µ1 + rei(π−θ1)

)
e(µ1−re−iθ1 )t−iθ1dr,

IEF :=
1

2πi
lim
R→∞
ϵ→0

∫
EF

Ψ1j(s)estds = −
1

2πi

∫ ∞

0
Ψ1j

(
µ1 + rei(−π−θ1)

)
e(µ1−re−iθ1 )t−iθ1dr .

Now f1j(r) := Ψ1j
(
µ1 + rei(π−θ1)

)
− Ψ1j

(
µ1 + rei(−π−θ1)

)
satisfies f1j(0) = 0 and f1j(∞) = 0,

and is uniformly bounded by some C > 0 since there are no poles onB−θ1
µ1 for any fixed q, where

we recall θ1 = θ1(q). Similar to the calculation in Appendix B.1 we have

ICD + IEF = −
αj

ξ2
j

sin(π/m)

π
Γ(1 + 1/m)t−1−1/meµ1t + O(t−1−2/meRe(µ1)t ).

Along Γ: If µ1 + ξ
m
j < Ω1, then limR→∞, ϵ→0

∮
Γ
Ψ1j(s)estds = 0. If µ1 + ξ

m
j ∈ Ω1, then

residue theorem gives,

IΓ :=
1

2πi
lim
R→∞
ϵ→0

∮
Γ

Ψ1j(s)estds =
1

2πi
lim
R→∞
ϵ→0

∮
Γ

αj

(s − µ1)
1/m − ξj

estds

= Res
s=µ1+ξ

m
j

(
αj

(s − µ1)
1/m − ξj

est
)
= lim

s→µ1+ξ
m
j

αj

(
(s − µ1) − ξ

m
j

)
(s − µ1)

1/m − ξj
est

= αjmξm−1
j e(µ1+ξ

m
j )t
=

P(µ1 + ξ
m
j )

Q′(µ1 + ξ
m
j )

e(µ1+ξ
m
j )t

where P(s) and Q(s) are numerator and denominator of Ψ(s), respectively, i.e., Ψ(s) = (P/Q)(s),
′ := d/ds, and αj :=

P(µ1+ξ
m
j )

Q′(µ1+ξ
m
j )mξm−1

j

. Combining the above results we obtain

I1 =
∑

µ1+ξ
m
j ∈Ω1

P(µ1 + ξ
m
j )

Q′(µ1 + ξ
m
j )

e(µ1+ξ
m
j )t
+ Calg,1 t−1−1/meµ1t + O(t−1−2/meRe(µ1)t )

= Cexp,1 es1t + Calg,1 t−1−1/meµ1t + O(t−1−2/meRe(µ1)t ) + o(eRe(s1)t ),
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s1 = argmax{Re(µ1 + ξ
m
j ) : µ1 + ξ

m
j ∈ Ω1, Cexp,1 , 0}, Cexp,1,Calg,1 ∈ C and

Calg,1 := −
sin(π/m)

π
Γ(1 + 1/m)

m−n∑
j=1

P(µ1 + ξ
m
j )

Q′(µ1 + ξ
m
j )mξ

m+1
j

.

Similarly, we can obtain

I2 =
∑

µ2+η
m
j ∈Ω2

P(µ2 + η
m
j )

Q′(µ2 + η
m
j )

e(µ2+η
m
j )t
+ Calg,2 t−1−1/meµ2t + O(t−1−2/meRe(µ2)t )

= Cexp,2 es2t + Calg,2 t−1−1/meµ2t + O(t−1−2/meRe(µ2)t ) + o(eRe(s2)t ),

s2 = argmax{Re(µ2+η
m
j ) : µ2+η

m
j ∈ Ω2, Cexp,2 , 0}, the branch cut isBθ1

µ2 and the corresponding
principal branch is Ω2 := {s ∈ C \ {µ2} : arg(s − µ2) ∈ (−π + θ2, π + θ2), θ2 ∈ (0, π/2)}, cf.
Fig. B.2b.

The calculation of I3k is similar to that of I1j except the integral along Γ vanishes as there is
no poles inside Ωca, and the integral along CD and EF gives

ICD + IEF =
1

2πi

∫ ∞

0

(
φk

rk/mei(π−θ1)k/m
−

φk

rk/mei(−π−θ1)k/m

)
e(µ1−re−iθ1)te−iθ1dr

=
1

2πi
φkeµ1t−iθ1

(
ei(θ1−π)k/m − ei(θ1+π)k/m

) ∫ ∞

0
r−k/me−re−iθ1 tdr

=
1

2πi
φkΓ (1 − k/m) e2i(k/m−1)

(
e−iπk/m − eiπk/m

)
eµ1t tk/m−1.

Hence we have (with I4 form a similar computation),

I3 =
1
π

eµ1t
n∑

k=1
φkΓ(1 − k/m)e2i(k/m−1) sin(πk/m)tk/m−1, (B.7)

I4 =
1
π

eµ2t
n∑

k=1
ψkΓ(1 − k/m)e−2i(k/m−1) sin(πk/m)tk/m−1, (B.8)

where the coefficients φk , ψk are given by

φk =
1

(n − k)!
lim
z→0

(
d
dz

)n−k
(znΨ(zm + µ1)) ,

ψk =
1

(n − k)!
lim
z→0

(
d
dz

)n−k
(znΨ(zm + µ2)) .

In particular, φn , 0 and ψn = 0 since P(s) and Q(s) have common factor (s − µ2)
n/m. Note that

I3 and I4 do not depend on θ1.

All in all, since Re(µ1) = Re(µ2), the solution in Fourier space can be written as

ŵ(q, t) = Cexp eλt + eµ1t
n∑

k=1
Cbp,k tk/m−1 + O(t−1−1/meRe(µ1)t ) + o(eRe(λ)t ), (B.9)
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λ := argmax{Re(s), s = sj ∈ Ω1∩Ω2, j = 1, 2}. If Re(λ) ≥ Re(µ1), then the first summand is the
leading order and, ŵ grows exponentially for Re(λ) > 0 and decays exponentially for Re(λ) < 0.
If Re(λ) < Re(µ1), then the second summand is the leading order and ŵ decays as tn/m−1eµ1t and

Cbp,n =
1
π
Γ(1 − n/m) sin(πn/m)φne2i(n/m−1) , 0.

Note that if {s : s ∈ Ωcc
ca,Dca(s, q2) = 0, q ∈ R} = ∅, then the decay fully depends on the second

summand in (B.9).

We conclude the proof of case cc by considering multiple roots.

Remark B.2.1. In case cc, if the poles are multiple besides µ1, µ2, then Ψ(s) has the form

Ψ(s) =
∑
j

lj∑
l=1

αjl

((s − µ1)1/m − ξj)l
+

∑
p

ℓp∑
ℓ=1

βpℓ

((s − µ2)1/m − ηp)ℓ

+

n∑
k=1

(
φk

(s − µ1)
k
m

+
ψk

(s − µ2)
k
m

)
=:

∑
j

lj∑
l=1
Ψjl(s) +

∑
p

ℓp∑
ℓ=1
Ψpℓ(s) +

n∑
k=1

(Ψ3k(s) + Ψ4k(s)),

where
∑

j lj =
∑

p ℓp = m − n. For the integral along Γ we obtain

1
2πi

lim
R→∞
ϵ→0

∮
Γ

Ψjl(s)estds = lim
s→µ1+ξ

m
j

αjl est
l−1∑
h=0

tl−1−h

h!(l − 1 − h)!

(
d
ds

)h (
m−1∑
n=0

(s − µ1)
m−n−1

n ξnj

) l
1

2πi
lim
R→∞
ϵ→0

∮
Γ

Ψpℓ(s)estds = lim
s→µ2+η

m
p

βpℓ est
ℓ−1∑
h=0

tℓ−1−h

h!(ℓ − 1 − h)!

(
d
ds

)h (
m−1∑
n=0

(s − µ2)
m−n−1

n ηnp

)ℓ
where

αjl =
1

(lj − l)!
lim
z→ξj

(
d
dz

) lj−l ( (
z − ξj

) lj
Ψ(zm + µ1)

)
βpℓ =

1
(ℓp − ℓ)!

lim
z→ηp

(
d
dz

)ℓp−ℓ ( (
z − ηp

)ℓp
Ψ(zm + µ2)

)
.

The integrals along branch cuts are given by (B.7) and (B.8) (leading order). The integrals
along other paths vanish. Hence, if Re(λ) ≥ Re(µ1), then ŵ behaves exponentially as tρ−1eλt ,
where ρ = max{ρj : j = 1, 2} and ρj is the multiplicity of zj = (λ − µj)

1/m if it is the root of
polynomial Dca(z1, z2, q2) = 0. If Re(λ) < Re(µ1), then ŵ decays as tn/m−1eµ1t .

Remark B.2.2. In case nr, the calculation is completely analogous to the case cc, so we omit
the details of the proof.





Appendix C

Some proofs

C.1 Proof of Lemma 2.4.18

We recall (2.44), i.e., Dss(s, q2) = 0. Rescaling q = κ/ε and s = x/εr , where 0 < ε ≪ 1 and
r > 0, substitution into (2.44) and balancing the powers of ε gives r = 2/(1− δ). The dispersion
relation becomes(

x + xδκ2 − ε2/(1−δ)a1

) (
x + xδdκ2 − ε2/(1−δ)a4

)
− ε

4
1−δ a2a3 = 0. (C.1)

and we seek solutions of the form

x = x0 + ε
αx1 + O(εβ), β > α > 0. (C.2)

Substitution into (C.1) yields the expansion (x0 + ε
αx1 +O(εβ))δ = xδ0 + δxδ−1

0 (εαx1 +O(εβ))+

O(ε2α) for x0 , 0 so that ordering powers of ε gives

(x0 + xδ0 κ
2)(x0 + xδ0 dκ2)

+ εα
(
(x0 + xδ0 κ

2)(x1 + δxδ−1
0 x1dκ2) + (x0 + xδ0 dκ2)(x1 + δxδ−1

0 x1κ
2)
)

− ε
2

1−δ

(
a1(x0 + xδ0 dκ2) + a4(x0 + xδ0 κ

2)
)

+ ε2α
(
x1 + δxδ−1

0 x1κ
2
) (

x1 + δxδ−1
0 x1dκ2

)
− εα+

2
1−δ

(
a1(x1 + δxδ−1

0 x1dκ2) + a4(x1 + δxδ−1
0 x1κ

2)
)

+ ε
4

1−δ (a1a4 − a2a3)

+ O(εβ)(2x0 + xδ0 κ
2 + xδ0 dκ2) + O(εα+β + ε3α) = 0.

Let us compare coefficients by orders of ε:

O(1): (x0 + xδ0 κ
2)(x0 + xδ0 dκ2) = 0, solutions are x01 = (−κ2)1/(1−δ) or x02 = (−dκ2)1/(1−δ).

O(εα): For x01 = (−κ2)1/(1−δ), balancing the coefficients of order O(ε2/(1−δ)) and O(εα)

yields α = 2/(1 − δ), and substituting x01 into the term of order O(εα) gives x11 = a1/(1 − δ).
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Combining the scaling s = x/εr with the expansion (C.2) gives the approximation

s∞1 = (−q2)1/(1−δ) +
a1

1 − δ
+ O(qα−β),

Since arg((−q2)1/(1−δ)) = π/(1−δ), the real part Re((−q2)1/(1−δ)) < 0 if π/(1−δ) ∈ (π/2, π+θ1),
i.e., δ ∈ (0, θ1/(π + θ1)). Hence, for any δ ∈ (0, θ1/(π + θ1)), there exists Q1 > 0 such that for
q > Q1 we have

Re(s∞1) = Re
((
−q2

) 1
1−δ
+

a1
1 − δ

+ O(qα−β)

)
< Re

((
−Q2

1

) 1
1−δ
+

a1
1 − δ

+ 1
)
< 0. (C.3)

Similarly, for x02 = (−dκ2)1/(1−δ), the solution is given by

s∞2 =
(
−dq2

) 1
1−δ
+

a4
1 − δ

+ O(qα−β).

For any δ ∈ (0, θ1/(π + θ1)), there exists Q2 > 0 such that for q > Q2 we have

Re(s∞2) = Re
((
−dq2

) 1
1−δ
+

a4
1 − δ

+ O(qα−β)

)
< Re

((
−dQ2

2

) 1
1−δ
+

a4
1 − δ

+ 1
)
< 0. (C.4)

With Q = max {Q1,Q2} (C.3) and (C.4) both hold if q > Q. Finally, δ ∈ (0, θ1/(π + θ1)) is the
necessary condition for s∞1 and s∞2 to lie in Ω0, cf. Lemma 2.4.24.

In the case x0 = 0, however, we transform the problem via sδ = z ⇒ s = z1/δ , and (2.44)
reads

Dss(z1/δ, q2) =
(
z1/δ + zq2 − a1

) (
z1/δ + zdq2 − a4

)
− a2a3 = 0.

Rescaling q = κ/ε, z = y/εµ, balancing the power of ε gives µ = 2δ/(1 − δ), which leads to

(
y1/δ + yκ2 − ε2/(1−δ)a1

) (
y1/δ + ydκ2 − ε2/(1−δ)a4

)
− ε4/(1−δ)a2a3 = 0 (C.5)

and we seek solutions of the form

y = y0 + ε
αy1 + o(εα). (C.6)

Substituting into (C.5), and using that the first derivative of y
1
δ exists for y = 0, we have
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(y0 + ε
αy1 + o(εα))1/δ = y

1/δ
0 + 1

δ y
1/δ−1
0 (εαy1 + o(εα)) + o(εα), which yields(

y
1
δ

0 + y0κ
2
) (

y
1
δ

0 + y0dκ2
)

+ εα

( (
y

1
δ

0 + y0κ
2
) (

1
δ
y

1
δ −1
0 y1 + y1dκ2

)
+

(
y

1
δ

0 + y0dκ2
) (

1
δ
y

1
δ −1
0 y1 + y1κ

2
) )

− ε
2

1−δ

(
a1

(
y

1
δ

0 + y0dκ2
)
+ a4

(
y

1
δ

0 + y0κ
2
) )

+ ε2α
(

1
δ
y

1
δ −1
0 y1 + y1κ

2
) (

1
δ
y

1
δ −1
0 y1 + y1dκ2

)
− εα+

2
1−δ

(
a1

(
1
δ
y

1
δ −1
0 y1 + y1dκ2

)
+ a4

(
1
δ
y

1
δ −1
0 y1 + y1κ

2
) )

+ ε
4

1−δ (a1a4 − a2a3)

+ o(εα)
(
2y

1
δ

0 + y0κ
2 + y0dκ2

)
+ o

(
ε2α

)
+ o

(
εα+

2
1−δ

)
= 0.

In the present case of x0 = 0 we have y0 = 0, so the coefficients of order O(1), O(εα) and
O(ε2/(1−δ)) vanish.

O(ε2α): Balancing the coefficients of order ε2α, εα+2/(1−δ) and ε4/(1−δ) yields α = 2/(1− δ),
and combining the coefficients gives

dκ4y2
1 − (a1dκ2 + a4κ

2)y1 + a1a4 − a2a3 = 0,

which has some roots y1±. Combining s = z1/δ , z = y/εµ and (C.6) gives the solution

s0± = z1/δ = (y/εµ)1/δ = ε2/δ y
1/δ
1± + o(ε2/δ).

Hence, limε→0 s0± = 0, which implies that lim |q |→∞ s0±(q) = 0.
This completes proof of Lemma 2.4.18.

C.2 Proof of Proposition 2.4.22

We prove Proposition 2.4.22 by the following series of lemmas. In summary, Lemma C.2.1 and
Lemma C.2.2 give the stability threshold d∞

δ ; Lemma C.2.1, Lemma C.2.3 and Lemma C.2.5
give the existence threshold d̃∞

δ .

We recall ζ := 4d(a1a4 − a2a3) − (a1d + a4)
2, b := a1d + a4, y1± = (b± i

√
ζ)/(2d) =: ρe±iθ .

Note Pmin > 0 implies ζ > 0.
We make a case distinction in terms of the sign of b.

Case b > 0, i.e., d > −
a4
a1

.

Lemma C.2.1. For any δ ∈ (0, π
2(π+θ1)

), there exists a Q > 0 such that for any |q | > Q we have
s0+(q) ∈ Ω−

0 if d̃∞
δ+ < d < d∞

δ , whereas s0±(q) < Ω0 if − a4
a1
< d < d̃∞

δ+, with d̃∞
δ+ the larger root

of (2.53).
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Proof. Re
(
y

1/δ
1+

)
< 0 if arg

(
y

1/δ
1+

)
= θ

δ ∈
(
π
2 , π + θ1

)
. We remark that we do not discuss y

1/δ
1−

here, since y
1/δ
1+ and y

1/δ
1− are complex conjugate, arg

(
y

1/δ
1−

)
= − arg

(
y

1/δ
1+

)
∈ (−π − θ1,−π/2),

which means if y1/δ
1− ∈ Ω0 then y

1/δ
1+ ∈ Ω0, but not vice versa, and if y1/δ

1+ < Ω0, then y
1/δ
1− < Ω0.

We consider
(
πδ
2 , (π + θ1)δ

)
⊂

(
0, π2

)
, i.e., δ < π

2(π+θ1)
. The condition θ

δ ∈ ( π2 , π + θ1) leads
to arctan(

√
ζ/b) ∈ (πδ/2, (π + θ1)δ) which yields

b2 tan2(πδ/2) < ζ < b2 tan2((π + θ1)δ).

Using c := cos2(πδ/2), c̃ := cos2((π + θ1)δ), these two inequalities can be written as

H(d) := a2
1d2 + (4c(a2a3 − a1a4) + 2a1a4)d + a2

4 < 0, (C.7)

H̃(d) := a2
1d2 + (4c̃(a2a3 − a1a4) + 2a1a4)d + a2

4 > 0. (C.8)

With d− from the proof of Lemma 2.4.21, the solutions of (C.7) are d ∈ (d−, d∞
δ ) and the solutions

of (C.8) are d > d̃∞
δ+; here we omit d < d̃∞

δ− as in the proof of Lemma 2.4.21. Using d̃∞
δ+ > −

a4
a1

,
combining these solutions gives d̃∞

δ+ < d < d∞
δ .

Whereas, y1+ < Σ0 if θ < (πδ/2, (π + θ1)δ) so we infer θ > (π + θ1)δ. Since arg(y1+) =

arctan(
√
ζ/b), we have arctan(

√
ζ/b) > (π + θ1)δ, which implies d̃∞

δ− < d < d̃∞
δ+ ⇒ −

a4
a1
< d <

d̃∞
δ+. □

Lemma C.2.2. For any δ ∈ [ π
2(π+θ1)

, 1), there exists a Q > 0 such that for any |q | > Q we have
s0+(q) ∈ Ω−

0 if − a4
a1
< d < d∞

δ .

Proof. Since b > 0, we have θ = arctan(
√
ζ/b) < π/2. In combination with the assumption

θ ∈ (πδ/2, (π + θ1)δ), we get θ ∈ (πδ/2, π/2) ⇒ arctan(
√
ζ/b) ∈ (πδ/2, π/2) which yields

ζ2 > b2 tan2(πδ/2).

Hence
H(d) = a2

1d2 + (2a1a4 + 4c(a2a3 − a1a4))d + a2
4 < 0,

The solution is d− < d < d∞
δ . Note d− < −

a4
a1

, thus we have − a4
a1
< d < d∞

δ . □

Case b < 0, i.e., d < −
a4
a1

Lemma C.2.3. In each of the following, for any δ in the given interval there exists a Q > 0 such
that for any |q | > Q the given statement holds.

(1) For [ π
π+θ1

, 1) we have s0+(q) ∈ Ω−
0 if d < −

a4
a1

;

(2) For (0, π
2(π+θ1)

] we have s0±(q) < Ω0 if d < −
a4
a1

;

(3) For
(

π
2(π+θ1)

, π
π+θ1

)
we have s0±(q) < Ω0 if d < d̃∞

δ−, and s0+(q) ∈ Ω−
0 if d̃∞

δ− < d < −
a4
a1

,

where d̃∞
δ− is the smaller root of (2.53).
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Proof. Since b < 0, if y1− ∈ Σ0, then y1+ ∈ Σ0, but not vice versa, and if y1+ < Σ0, then y1− < Σ0.
Hence we only consider y1+. It is straightforward that arg(y1+) ∈

(
π
2 , π

)
, so arg

(
y

1/δ
1+

)
∈

(
π

2δ ,
π
δ

)
.

First, y1/δ
1+ ∈ Ω0 if

(
π

2δ ,
π
δ

)
⊆ (−π + θ1, π + θ1) ⇒ δ ≥ π

π+θ1
. From δ ∈ [ π

π+θ1
, 1) we have

arg
(
y

1/δ
1+

)
∈

(
π

2δ ,
π
δ

)
⊂ ( π2 , π + θ1), which means Re

(
y

1/δ
1+

)
< 0 if δ ∈ [ π

π+θ1
, 1).

Second, y1/δ
1+ < Ω0 if π

δ ≤ −π + θ1 or π
2δ ≥ π + θ1, so we have δ ≤ π

2(π+θ1)
, which means

y
1/δ
1+ < Ω0 if δ ∈ (0, π

2(π+θ1)
].

Next, we consider the case δ ∈ ( π
2(π+θ1)

, π
π+θ1

): y1+ < Σ0 if arg(y1+) < ((−π + θ1)δ, (π + θ1)δ).
Since b < 0, Re(y1+) < 0 we infer arg(y1+) ∈ ((π + θ1)δ, π). From the assumption δ ∈

( π
2(π+θ1)

, π
(π+θ1)

)we have (π+θ1)δ ∈
(
π
2 , π

)
, so arg(y1+) ∈

(
π
2 , π

)
. Now arg(y1+) = arctan(

√
ζ/b)+

π > (π + θ1)δ ⇒
√
ζ/b > tan((π + θ1)δ − π) = tan((π + θ1)δ) ⇒ ζ < b2 tan2((π + θ1)δ). The

solution is d < d̃∞
δ− or d > d̃∞

δ+ (omit, because d̃∞
δ+ > −

a4
a1

). That means y1+ < Σ0 if d < d̃∞
δ−.

Whereas y1+ ∈ Σ if arg(y1+) ∈ ( π2 , (π+ θ1)δ) ⇒ ζ > b2 tan2((π+ θ1)δ), the solutions of the latter
are d̃∞

δ− < d < d̃∞
δ+ ⇒ d̃∞

δ− < d < −
a4
a1

. □

Remark C.2.4. When δ = π
π+θ1

, c̃ = cos2(π) = 1, which leads to H̃(d) = F(d). Therefore the
solutions to H̃(d) = 0 and F(d) = 0 are equivalent, i.e., d̃∞

δ− = df r−. Hence, the first statement
in Lemma C.2.3 implies Case 1b of Section 2.4.4.

Case b = 0, i.e., d = −
a4
a1

, we have the following lemma.

Lemma C.2.5. For any δ ∈ ( π
2(π+θ1)

, 1), there exists a Q > 0 such that for any |q | > Q we have
s0+(q) ∈ Ω−

0 if d = −
a4
a1

, and for any δ ∈ (0, π
2(π+θ1)

], s0±(q) < Ω0 if d = −
a4
a1

.

Proof. Assume that d = −
a4
a1

, i.e., b = 0, then Re(y1±) = 0 and arg(y1±) = ±π/2 so that again it
suffices to consider y1+. y1/δ

1+ ∈ Ω0 if π
2δ ∈ (−π + θ1, π + θ1) ⇒ δ > π

2(π+θ1)
, i.e., δ ∈ ( π

2(π+θ1)
, 1),

which leads to arg
(
y

1/δ
1+

)
= π

2δ ∈
(
π
2 , π + θ1

)
and implies Re

(
y

1/δ
1+

)
< 0.

When δ ∈ (0, π
2(π+θ1)

], max((π + θ1)δ) = π/2. Hence the argument of Σ0 is less than π/2,
whereas arg(y1+) = π/2, so y

1/δ
1+ < Ω0. □





Appendix D

Existence of stripes

Writing the nonlinear part as F(u) := Q[u, u] + K[u, u, u] we seek wave trains as steady states,
i.e. solutions to

Φ(u, µ) := Lµu + F(u) = 0 (D.1)

with Φ : (H2
per)

2 × Λ → (L2)2 on the Sobolev- and Lebesgue-spaces (H2
per)

2 to (L2)2 with
normalised inner product ⟨u, v⟩L2 = 1

2π

∫ 2π
0 uvdx. It is well-known that the realisation Lµ :

(H2
per)

2 → (L2)2 is a bounded Fredholm operator with index zero. Therefore, all solutions to
(D.1) which bifurcate from µ = 0 can be fully determined by Lyapunov-Schmidt reduction.

By assumption, L0 has a two-dimensional kernel spanned by e0(x) = E0eix and its complex
conjugate, where E0 is the eigenvector in the kernel of L̂0 = −k2

c D + L. Let L∗
0 be the

adjoint operator of L0 equipped with inner product ⟨·, ·⟩L2 , and thus L∗
0 has a kernel spanned by

e∗0(x) = E∗
0 eix and its complex conjugate. Having in mind the scaled inner products, we choose

the normalisation ⟨e0, e∗0⟩ = 1 and ⟨e0, e0⟩ = 1, i.e., ⟨E0, E∗
0 ⟩ = 1 and ⟨E0, E0⟩ = 1 (cf. Remark

3.2.5).
By Fredholm properties there exists closed subspaces X ⊂ (H2

per)
2 and Y ⊂ (L2)2 such that

(H2
per)

2 = ker L0 ⊕ X, (L2)2 = Y ⊕ rangeL0.

Hence for each u ∈ (H2
per)

2, there exists unique v ∈ ker L0 and w ∈ X such that u = v + w. With
the projection Ph : (L2)2 → rangeL0, equation (D.1) is equivalent to the system

PhΦ(v + w, µ) = 0, (D.2)

(Id − Ph)Φ(v + w, µ) = 0. (D.3)

Differentiating (D.2) with respect to w at (0, 0) gives Ph∂uΦ(0, 0) = PhL0 = L0 |X : X →

rangeL0 as a boundedly invertible operator. Hence, for given v (D.2) can be solved by the
implicit function theorem in terms of a smooth function W : ker L0 × Λ→ Y with W(0, 0) = 0,
∂vW(0, 0) = 0 as

w = W(v, µ), (D.4)
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satisfying PhΦ(v +W(v, µ), µ) = 0. Substituting (D.4) into (D.3) yields the bifurcation equation

ϕ(v, µ) := (Id − Ph)Φ(v +W(v, µ), µ) = 0,

with ϕ : ker L0 × Λ→ Y . Since rangeL0 ∩ ker L0 = {0} and we are in Hilbert spaces, we can
choose

X = rangeL0 ∩ (H2
per)

2, Y = ker L∗
0 = (rangeL0)

⊥,

where the adjoint L∗
0 has a kernel spanned by e∗0(x) = E∗

0 eix and its complex conjugate. Hence,
it is natural to write the projection as Ph = Id − P with

Pu = ⟨u, e∗0⟩e0 + ⟨u, e∗0⟩e0,

which equally is a projection for the splitting u = v +w, when constrained to (H2
per)

2. With some
abuse, we use the same notation for inner products in L2 and C2 as it is clear from the context
what is meant. Note that ⟨PΦ, e∗0⟩ = ⟨Φ, e∗0⟩ since ⟨PhΦ, e∗0⟩ = 0 for solutions.

Writing v = Ae0 + Ae0 the bifurcation equation can be cast as

g(A, A, µ) := ⟨ϕ(Ae0 + Ae0, µ), e∗0⟩ = 0 (D.5)

with g : C × C × Λ → R which we next expand in order to expand solutions. Using (D.1) and
PL0 = 0 gives

g(A, A, µ) = ⟨(Lµ − L0)v, e∗0⟩ + ⟨(Lµ − L0)W, e∗0⟩ + ⟨F(v +W), e∗0⟩ (D.6)

Let us first consider the last term that includes F. While E0, E∗
0 are real, we show the complex

conjugate to highlight the origin of terms. It is a priori clear from the construction that W =
O(|v | |µ|) = O(|A| |µ|), cf. (D.10) for the details a posteriori. For u = Ae0 + Ae0 +W we then
readily compute

⟨K[u, u, u], e∗0⟩ = 3A|A|2k0 + O(|A|3(|µ| + A2)), (D.7)

where k0 = ⟨K[E0, E0, E0], E∗
0 ⟩, and we used that orthogonality of Fourier modes removes even

powers of v, i.e., even powers of A.
The more involved ⟨Q[u, u], e∗0⟩ analogously gives

2A⟨Q[e0,W], e∗0⟩ + 2A⟨Q[e0,W], e∗0⟩ + O(A2(|µ|2 + A2)), (D.8)

which requires expanding W = W(A, A, µ) through (D.2), i.e., the fixed point equation PhLµW =
G(W, A, A, µ) with

G(W, A, A, µ) := −PhF(v +W) − Ph(Lµ − L0)v, (D.9)

where v = Ae0 + Ae0 and

Lµ − L0 = (2kc κ̃ + κ̃
2)D∂2

x + α̌M + β(kc + κ̃)B∂x .
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Using ∂vG(0) = ∂WG(0) this expansion gives ∂AW(0) = ∂AW(0) = 0 and, cf. (3.7),

∂AAW(0) = −2(−4k2
c D + A)−1Q[E0, E0] = Q2,

∂AAW(0) = −2A−1Q[E0, E0] = Q0,

L0∂Aα̌W(0) = −PhMe0,

L0∂AβW(0) = −kcPhB∂xe0 = −ikcPhBe0,

L0∂Aκ̃W(0) = −2kcPhD∂2
xe0 = 2kcPhDe0,

L0∂AββW(0) = −2kcPhB∂x∂AβW(0),

so that, looking at the Fourier modes,

∂AβW(0) = iwAβeix, ∂Aκ̃W(0) = wAκ̃eix, ∂Aα̌W(0) = wAα̌eix, ∂AββW(0) = wAββeix .

Furthermore wAβ,wAκ̃ and wAα̌ satisfy, cf. (3.7),

(−k2
c D + A)wAα̌ = (⟨ME0, E∗

0 ⟩ − M)E0,

(−k2
c D + A)wAβ = kc(⟨BE0, E∗

0 ⟩ − B)E0,

(−k2
c D + A)wAκ̃ = 2kcDE0,

(−k2
c D + A)wAββ = 2kc(BwAβ − ⟨BwAβ, E∗

0 ⟩E0),

where we used ⟨DE0, E∗
0 ⟩ = 0, which follows from a direct computation with the conditions in

Remark 3.2.3. Note that for M = Id we have wAα̌ = 0 and in fact W is independent of α̌.
Assembling terms, we obtain

W(A, A, µ) = iβwAβ(Aeix − Ae−ix) + (κ̃wAκ̃ + α̌wAα̌ + β
2wAββ)(Aeix + Ae−ix)

+
1
2

Q2

(
A2e2ix + A

2e−2ix
)
+ AAQ0 + R,

(D.10)

where R = O(|A|(A2+ κ̃2+ |βκ̃ |+ |β |3+aM α̌
2)); recall aM = 0 if M = Id and aM = 1 otherwise.

Notably, the terms of order |Aβκ̃ | are not relevant to the large-wavelength stability of stripes, so
we put them in the remainder. By translation symmetry we can shift x to x + a, which gives A
replaced by Aeia so that without loss of generality A is real. This gives (3.10).

The bifurcation equation (D.5) gives (3.8) through its real part divided by A. The velocity
equation (3.9) stems from rearranging the imaginary part divided by βA. The latter is natural
since imaginary terms arise from odd powers of ∂x , which come with odd power of β. In order
to separate resolved parts, that will be leading order for later purposes, and remainder terms in
(3.8), (3.9), we substitute (D.10) into (D.6), where the third summand is (D.7) plus (D.8). In
(D.8) only Fourier modes eirx of W with r = 0 or r = 2 are nonzero. The case r = 0 stems only
from products that have Aj A

j , j ≥ 2 as the order in A since j = 0, 1 are resolved terms; the case
r = 2 has Aj+2 A

j , j ≥ 1. Hence, terms in (D.8) that stem from R are order A4; from (D.7) this is
order A5. The second summand of (D.6) is nonzero for linear terms in A only, which contribute
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to higher order terms in λ̃(µ) as discussed below. Hence, the relevant remainder term from (D.6)
is order A4.

The remainder term in (3.8) and (3.9) has this order divided by A, i.e., O(A3). This is also
the order of the contribution of R to the remainder term in (3.9); here we note that real parts turn
imaginary in (D.6) only through application of βkcB∂x thus gaining a power of β.

The part of (D.5) that is resolved in (3.8), (3.9) arises upon substituting the resolved terms
of (D.10) into (D.8), and further into (D.6); here (D.7) directly enters. Noting cancellation due
to the Fourier modes and dividing out the trivial solution A = 0 we obtain

∂Ag(0; µ) + ρnl A2, (D.11)

and its complex conjugate. On the one hand, for F = 0 the bifurcation equation is linear in A
and determines when Lµ has a kernel, which means there is a smooth function r(µ) such that

∂Ag(0; µ) = λ̃(µ) = r(µ)λµ,

with λµ the critical eigenvalue from (3.5) and r(0) , 0. Expanding r we thus have

λ̃(µ) = r(0)λµ + R3, O(R3) = O(|µ| |λµ |)

and we can determine the expansion of λ̃ from

∂Ag(0; µ) = ⟨(Lµ − L0)(Id + ∂µ∂vWµ + O(|µ|2))e0, e∗0⟩

= ⟨(Lµ − L0)e0, e∗0⟩ + ⟨(Lµ − L0)∂µ∂vWµ + O(|µ|2))e0, e∗0⟩.

In particular, ∂α̌λ̃(0) = ⟨ME0, E∗
0 ⟩ which equals λM by a direct computation so that r(0) = 1.

Moreover, the real part of (D.11) gives (3.8) and solving the imaginary part divided by β for c
gives (3.9) when including the remainder terms discussed before. In particular, r(0) = 1 yields
(3.11) by comparing the other coefficients, and ⟨BE0, E∗

0 ⟩|µ=0 = 0.



Appendix E

Stability of stripes

E.1 Spectrum for zigzag instability

From (3.23) the critical spectrum is given by

λzz = −κ2⟨DV0,V∗
0 ⟩ℓ

2 + O(ℓ4).

We may choose V0 = ∂xUs = O(|A|). Expanding T ∗
0 V∗

0 = 0 analogous to the computation of Us

gives

V0 = − 2A
(
(E0 + κ̃wAκ̃ + α̌wAα̌ + β

2wAββ) sin(x) + βwAβ cos(x)

+ AQ2 sin(2x) + O(R/|A|)
)
,

V∗
0 = − A∗

(
(E∗

0 + κ̃w
∗
Aκ̃ + α̌w

∗
Aα̌ + β

2w∗
Aββ) sin(x) − βw∗

Aβ cos(x)

+ AQ∗
2 sin(2x) + O(R/|A|)

)
,

where

w∗
Aκ̃ = 2kc(−k2

c D + AT )−1DE∗
0,

w∗
Aβ = kc(−k2

c D + AT )−1(⟨BE∗
0, E0⟩ − B)E∗

0,

w∗
Aα̌ = (−k2

c D + AT )−1(⟨MT E∗
0, E0⟩ − MT )E∗

0,

w∗
Aββ = 2kc(−k2

c D + AT )−1(Bw∗
Aβ − ⟨Bw∗

Aβ, E0⟩E∗
0 ),

Q∗
2 = −2(−4k2

c D + AT )−1Q[E0, ·]
T E∗

0 .

The normalised coefficient A∗ is such that ⟨V0,V∗
0 ⟩ = 1, which implies A∗ = O(|A|−1) and

AA∗ = 1 in the limit µ → 0 since ⟨V0,V∗
0 ⟩|µ=0 = AA∗ |µ=0⟨E0, E∗

0 ⟩ = 1. By straightforward
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calculation and using ⟨DE0, E∗
0 ⟩ = 0, we have

1
AA∗

⟨DV0,V∗
0 ⟩ = κ̃(⟨DE0,w

∗
Aκ̃⟩ + ⟨DwAκ̃, E∗

0 ⟩)

+ β2(⟨DE0,w
∗
Aββ⟩ + ⟨DwAββ, E∗

0 ⟩ − ⟨DwAβ,w
∗
Aβ⟩)

+ α̌(⟨DE0,w
∗
Aα̌⟩ + ⟨DwAα̌, E∗

0 ⟩)

+ A2⟨DQ2,Q∗
2⟩ + O(R/|A|)

= −
ρκ̃
kc
κ̃ + ρ̃βββ

2 + ρ̃α̌aMα + q̃22 A2 + O(R/|A|), (E.1)

where ⟨DwAκ̃, E∗
0 ⟩ = ⟨DE0,w

∗
Aκ̃⟩ = −ρκ̃/(2kc). Upon substitution into λzz, expansion of κ and

using the leading order of (3.8) yields the claimed result.

E.2 Spectrum for Eckhaus instability

The critical spectrum is given by

λeh = (∂γλ)0γ +
1
2
(∂2

γλ)0γ
2 + O(|γ |3).

We first compute (∂γλ)0, i.e., the terms in (3.22) and (3.24). Differentiating

LµUs +Q[Us,Us] + K[Us,Us,Us] = 0

with respect to κ̃ and rearranging terms yields

T0∂κ̃Us = −2(2κD∂x + βB + βκ∂κ̃B)V0. (E.2)

Hence, we can solve for ∂κ̃Us if and only if

⟨(2κD∂x + βB + βκ∂κ̃B)V0,V∗
0 ⟩ = 0,

where ∂κ̃B = ∂κ̃c · Id = (λβ − λκ̃β)/kc · Id, cf. (3.9), so that from (3.22) we have

(∂γλ)0 = −iκ⟨βκ∂κ̃BV0,V∗
0 ⟩ = −iκ2β∂κ̃c = iκ2β

λκ̃β − λβ

kc
, (E.3)

and the leading order gives the imaginary part of the claimed spectrum.

Remark E.2.1. As in [10] (∂γλ)0 measures the correction of the phase velocity c to the group
velocity cg. Let ω(κ) denote the nonlinear dispersion relation so that

c =
ω(κ)

κ
, cg =

dω(κ)
dκ

.

Differentiating c with respect to κ̃ gives

∂κ̃c =
1
κ

dω(κ)
dκ

−
ω(κ)

κ2 =
cg − c
κ

,

and substituting into (E.3), yields

(∂γλ)0 = iκβ(c − cg).

Hence, for β , 0, 0 ≤ | κ̃ | ≪ 1, we have (∂γλ)0 = 0 ⇔ c = cg.
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Next, we consider (∂γV)0. Due to (3.19), (3.21) and (E.2) we have

T0(∂γV)0 = (∂γλ)0V0 − (∂γT)0V0 = (−iκ2β∂κ̃c − 2iκ2D∂x − iκβB)V0

= iκT0∂κ̃Us = T0(iκ∂κ̃Us),

which implies that (∂γV)0 − iκ∂κ̃Us lies in the kernel of T0, spanned by V0, and there is a ∈ C

such that (∂γV)0 = iκ∂κ̃Us + aV0.
This term is not relevant for (∂2

γλ)0 since we compute

(∂2
γλ)0 = ⟨(∂2

γT)0V0,V∗
0 ⟩ − 2⟨((∂γλ)0 − (∂γT)0)(∂γV)0,V∗

0 ⟩

= − 2κ2⟨DV0,V∗
0 ⟩ − 2⟨((∂γλ)0 − (∂γT)0)(iκ∂κ̃Us + aV0),V∗

0 ⟩

= − 2κ2⟨DV0,V∗
0 ⟩ − 2⟨((∂γλ)0 − (∂γT)0)(iκ∂κ̃Us),V∗

0 ⟩

using (3.20) in the third equality. Upon substituting (E.3) and (3.21) we obtain

(∂2
γλ)0 = − 2κ2⟨2κD∂x∂κ̃Us,V∗

0 ⟩ (E.4)

− 2κ2⟨DV0,V∗
0 ⟩ + 2β

κ3

kc
(λκ̃β − λβ)⟨∂κ̃Us,V∗

0 ⟩ − 2κ2β⟨B∂κ̃Us,V∗
0 ⟩, (E.5)

and we will show that (E.4) is leading order. By (E.1) the first term in (E.5) is order O(|aMα | +

| κ̃ | + β2 + A2), and we show the others are O(A−2β2(| κ̃ | + |aMα |) + β
2).

Differentiating Us with respect to κ̃ gives

∂κ̃Us = ∂κ̃ A
(
2(E0 + κ̃wAκ̃ + α̌wAα̌ + β

2wAββ) cos(x) − 2βwAβ sin(x)
)

+ 2AwAκ̃ cos(x) + 2A∂κ̃ AQ2 cos(2x) + 2A∂κ̃ AQ0 + ∂κ̃R,

with ∂κ̃R = O(|A|(|β | + | κ̃ |)+ |∂κ̃ A|R/|A|) by differentiating the smooth remainder in (3.10). In
the following we frequently omit remainder terms such as R as the order of the remainder terms
do not change and we are only interested in the resolved terms, which will be higher order in the
application of the result. From Theorem 3.3.1,

Aκ̃ := ∂κ̃ A = −
2ρκ̃ κ̃ + λM κ̃aMα

2ρnl A
= O(|A|−1(| κ̃ | + |aMα |)), (E.6)

which means

⟨∂κ̃Us,V∗
0 ⟩ = Aκ̃ A∗β(⟨wAβ, E∗

0 ⟩ + ⟨E0,w
∗
Aβ⟩) + AA∗β⟨wAκ̃,w

∗
Aβ⟩

⟨B∂κ̃Us,V∗
0 ⟩ = Aκ̃ A∗β(⟨BwAβ, E∗

0 ⟩ + ⟨BE0,w
∗
Aβ⟩) + AA∗β⟨BwAκ̃,w

∗
Aβ⟩,

so that (E.5) is of order O((1 + A−2β2)(| κ̃ | + |aMα |) + β
2 + A2).

As to (E.4), differentiating ∂κ̃Us with respect to x gives (to leading order)

∂x∂κ̃Us = − 2Aκ̃

(
(E0 + κ̃wAκ̃ + α̌wAα̌ + β

2wAββ) sin(x) + βwAβ cos(x)
)

− 2AwAκ̃ sin(x) − 4AAκ̃Q2 sin(2x),
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thus we have

⟨D∂x∂κ̃Us,V∗
0 ⟩ = (Aκ̃ A∗ κ̃ + AA∗)⟨DwAκ̃, E∗

0 ⟩ + Aκ̃ A∗ κ̃⟨DE0,w
∗
Aκ̃⟩

+ Aκ̃ A∗α̌(⟨DwAα̌, E∗
0 ⟩ + ⟨DE0,w

∗
Aα̌⟩)

+ Aκ̃ A∗β2(⟨DwAββ, E∗
0 ⟩ + ⟨DE0,w

∗
Aββ⟩ − ⟨DwAβ,w

∗
Aβ⟩)

+ 2A2 Aκ̃ A∗⟨DQ2,Q∗
2⟩

= (2Aκ̃ A−1 κ̃ + 1)⟨DwAκ̃, E∗
0 ⟩ + Aκ̃ A−1(ρα̌aMα + ρβββ

2) (E.7)

+ 2A2 Aκ̃ A∗⟨DQ2,Q∗
2⟩.

Since A2 Aκ̃ A∗ = O(| κ̃ | + |aMα |), it is a higher order term compared to ⟨DwAκ̃, E∗
0 ⟩ = O(1).

Substituting (E.6), (3.7) and (3.8), (E.7) becomes

⟨D∂x∂κ̃Us,V∗
0 ⟩ =

ρκ̃
2kcρnl

A−2
(
α + ρββ

2 + 3ρκ̃ κ̃2
)

+ O

(
A−2(|aMα | + | κ̃ |)(aMα + β

2) + |aMα | + | κ̃ |
)

Altogether, using κ = kc + κ̃ we have, omitting the refinement when M = Id,

(∂2
γλ)0 = − 4κ3⟨D∂x(∂κ̃Us),V∗

0 ⟩ (E.8)

+ O(A−2(|α | + | κ̃ |)(|α | + β2) + |α | + | κ̃ | + β2 + A2)

= − 2k2
c
ρκ̃
ρnl

A−2
(
α + ρββ

2 + 3ρκ̃ κ̃2 + Reh

)
(E.9)

which is as claimed and has remainder term

Reh = O

(
|ακ̃ | + α2 + |α |β2 + | κ̃ |β2 + | κ̃ |3 + A2(| κ̃ | + |α | + β2 + A2)

)
. (E.10)

Note that A2 | κ̃ | is higher order compared to α + ρββ2 + 3ρκ̃ κ̃2 due to (3.12), and |ακ̃ | is higher
order since α behaves quadratically for any balanced order between α, β2, κ̃2 which makes |ακ̃ |

cubic order.

E.3 Stability of 2D and 4D centre manifolds

We recall the simplified linearisation (3.34), namely

∂u f (uc; µ) = ε2P
(
L(µ2) + L(µ1)Ψ11[µ1, ·] + 2A′2Q[Ψ20[u1, u1], ·]

+ 4A′2Q[u1,Ψ20[u1, ·]] + 3A′2K[u1, u1, ·]
)
+ O(ε3). (E.11)

The matrix L1 is known a priori from Theorem 3.5.4, but for completeness, we derive it
here directly. Setting u1 = 0 gives the linearisation in the zero state so that the first two terms
in the bracket generate the eigenvalue from (3.5), α′ + ρββ

′2 + ρκ̃ κ̃
′2, which is of the form

−ρnl A′2 + O(ε), cf. (3.8).
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More specifically these contribute the diagonal 2-by-2 matrix AL := −ρnlId to the linearisa-
tion at order ε2. As to the nonlinear terms, the simplest is K[u1, u1, ·] and with u1 = (eix +e−ix)E0

we find the 2-by-2 matrix with entries generated by choosing σ1, σ2 ∈ {±1} as

⟨K[u1, u1, eσ1ixE0], eσ2ixE∗
0 ⟩ =

k0
|Ω1 |

∫
Ω1

(
e2ix + 2 + e−2ix

)
ei(σ1−σ2)xdx.

This results in the matrix AK := k0

(
2 1
1 2

)
. The contributions from the quadratic term depend

on Ψ20, which can be computed from the general centre manifold characteristic equation [20]

∂uΨ(uc; µ) f (uc; µ) = Ph(Lµ(uc + Ψ(uc; µ)) + F(uc + Ψ(uc; µ))),

which holds for all uc ∈ N , |uc | ≪ 1. At the bifurcation point, i.e., Ûuc = f (uc; µ) = 0, the above
equation reduces to the fixed point equation [70, Eq. A.9]

PhLµΨ(uc; µ) = −PhF(uc + Ψ(uc; µ)) − Ph(Lµ − L0)uc .

At order u2
c we find Ph(L0Ψ20 + 2Q) = 0 on N in analogy to the expansion for [70, Eq. A.8], so

that Ψ20 = −2L−1
0 Q. This means

Ψ20[u1, u1] = Ψ20[E0, E0](e2ix + 2 + e−2ix) = Q0 +
1
2

Q2(e2ix + e−2ix),

Ψ20[u1, ae0 + be0] = Ψ20[E0, E0](ae2ix + a + b + be−2ix)

=
a
2

(
Q0 +Q2e2ix

)
+

b
2

(
Q0 +Q2e−2ix

)
.

The first equation is in fact an immediate consequence of the formula for stripes and f (uc; µ) = 0.
As to the matrix entries this generates, we compute for the first row

⟨Q[Ψ20[u1, u1], e0], e∗0⟩ = ⟨Q[Q0 +
1
2

Q2e2ix, e0], e∗0⟩ = q0

⟨Q[Ψ20[u1, u1], e0], e∗0⟩ = ⟨Q[Q0 +
1
2

Q2e2ix, e0], e∗0⟩ =
1
2

q2,

whose entries are reversed in the second row so we get AQ := 1
2

(
2q0 q2

q2 2q0

)
. Analogously,

⟨Q[u1,Ψ20[u1, e0]], e∗0⟩ = ⟨Q[e0 + e0,
1
2

(
Q0 +Q2e2ix

)
], e∗0⟩ =

1
2
(q0 + q2)

⟨Q[u1,Ψ20[u1, e0]], e∗0⟩ = ⟨Q[e0 + e0,
1
2

(
Q0 +Q2e−2ix

)
], e∗0⟩ =

1
2

q0,

whose entries are reversed in the second row so we get BQ := 1
2

(
q0 + q2 q0

q0 q0 + q2

)
.

In sum, the matrix for the linearisation on the centre manifold is, as claimed,

∂u f (uc; µ) = ε2 A′2(AL + 3AK + 2AQ + 4BQ) = A2ρnl

(
1 1
1 1

)
.
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The claimed block diagonal structure for the linearisation in stripes is a result of non-
resonance between the arising wave vectors; the only relevant resonances away from the subblock
L1 are ksq

2 + ksq
−2 = 0. Casting Lsq as a matrix, its entries are

(Lsq)j,ℓ = ⟨∂u f (uc; µ)eℓ, e∗j ⟩, j, ℓ = ±1,±2.

Being the linearisation in stripes, multiples of ksq
±1 enter from ∂u f (uc; µ)e±1, but (in the chosen

ordering) off-diagonal entries give one additional wavevector ksq
j for j , ±1, and hence no

resonance is possible. Therefore, the linearisation has block-diagonal form.

Concerning the subblock Lsq
2 , analogous to L1, due to the lack of resonances, (3.33) simplifies

to (E.11). Setting u1 = 0 gives the linearisation in the trivial equilibrium to order ε2 and the
eigenvalues arise directly from the Fourier transform in y-direction, or by using (3.5) with β = 0,
κ̃ = ℓ̃, i.e.,

λℓ̃ = α + ρκ̃ ℓ̃
2
+ O(ε3) ∈ R,

so that with (3.13) we have λℓ̃ = ε2λ′
ℓ̃
. Concerning the simplest nonlinear term K[u1, u1, ·]. The

stripes u1 = (eiksq
1 ·x + e−iksq

1 ·x)E0 yield

⟨K[u1, u1, eℓ], e∗j ⟩ =
k0
|Ω2 |

∫
Ω2

(
ei2ksq

1 ·x + 2 + e−i2ksq
1 ·x

)
ei(ksq

ℓ
−ksq

j )·xdx

which, for j, ℓ , ±1, gives a contribution on the diagonal j = ℓ only, namely 6k0ε
2 A′2.

It remains to consider the contributions from Q and the centre manifold Ψ20, i.e. the terms
from Corollary 3.5.3 at order ε2:

2PQ[Ψ20[u1, u1], ·], 4PQ[u1,Ψ20[u1, ·]].

Since Ψ20[u1, u1] =
1
2Q2(e2iksq

1 x + e−2iksq
1 x) +Q0, for ℓ, j , ±1 we find

2⟨Q[Ψ20[u1, u1], eℓ], e∗j ⟩ = 2q0

for j = ℓ and zero otherwise due to non-resonance with 2ksq
1 .

As to 4PQ[u1,Ψ20[u1, ·]] we first compute, since ℓ, j ∈ {±2} and the only contribution comes
from the identity in Ph = Id − P that

Ψ20[u1, eℓ] = −L−1
0 PhQ[u1, eℓ] = −L−1

0 (Q[u1, eℓ] − PQ[u1, eℓ])

= −L−1
0 Q[E0, E0]ei(ksq

1 +ksq
ℓ
)·x

= −(−2k2
c D + L)−1Q[E0, E0]ei(ksq

1 +ksq
ℓ
)·x.

Substituting into 4PQ[u1,Ψ20[u1, ·]] gives for ℓ = j

4⟨Q[u1,Ψ20[u1, eℓ]], e∗j ⟩ = 8⟨Q[E0,Q11], E∗
0 ⟩ = 8q11,

and zero otherwise.
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E.4 Stability of 6D centre manifold

The 1D subsystem is clearly an invariant subsystem (as are several others) and the form of the
block L1 follows from Theorem 3.5.4.

Analogous to Appendix E.3, the claimed block diagonal structure for the linearisation in
stripes is a result of non-resonance between the arising wave vectors; the only relevant resonances
away from the subblock L1 are triads k1 + k2 = k−3. Casting Lhex as a matrix, its entries are

(Lhex)j,ℓ = ⟨∂u f (uc; µ)eℓ, e∗j ⟩, j, ℓ = ±1,±2,±3.

Being the linearisation in stripes, multiples of k±1 enter from ∂u f (uc; µ)e±1, but (in the chosen
ordering) off-diagonal entries give one additional wavevector k j for j , ±1, and hence no triad
is possible. Therefore, the linearisation has block-diagonal form.

The two equal subblocks Lhex
2 are obtained by symmetry, and Corollary 3.5.3 gives the

relevant terms at order ε and ε2. The only term at order ε is 2εA′PQ[u1, ·], which contributes
through triads on the off-diagonal only as 2εA′q.

Setting u1 = 0 gives the linearisation in the trivial equilibrium to order ε2 and the eigenvalues
are known a priori from Lemma 3.2.2, see also (3.17), and α, κ̃ can be readily included analogous
to (3.5); note that the coefficient of κ̃ stems from isotropic domain scaling. By choice of c and
with k j the first component of the wavevectors, these eigenvalues have the form

λµ, j = α + k2
j ρββ

2 + ρκ̃ κ̃
2 + O(|A|3) ∈ R,

which are all equal for j , ±1 (k2 = k3 = 1/2) and enter as entries of Lhex along the diagonal.
Due to the scalings (3.13), we can write λµ, j = ε2λ′µ, j .

We proceed analogous to Appendix E.3 with the simplest nonlinear term K[u1, u1, ·]. Stripes
u1 = (eik1 ·x + e−ik1 ·x)E0 yield

⟨K[u1, u1, eℓ], e∗j ⟩ =
k0
|Ω3 |

∫
Ω3

(ei2k1 ·x + 2 + e−i2k1 ·x)ei(kℓ−k j )·xdx

which, for j, ℓ , ±1, gives a contribution on the diagonal j = ℓ only, namely 6k0ε
2 A′2.

It remains to consider the contributions from Q and the centre manifold via Ψ20,Ψ11, i.e. the
five terms from Corollary 3.5.3 at order ε2:

2PQ[Ψ20[u1, u1], ·], 4PQ[u1,Ψ20[u1, ·]], 2PL(µ1)Ψ20[u1, ·],

2PQ[Ψ11[µ1, u1], ·], 2PQ[u1,Ψ11[µ1, ·]].

Notably, the first two enter with a factor A′2, while the others only have a factor A′.
Since Ψ20[u1, u1] =

1
2Q2(e2ik1x + e−2ik1x) +Q0, for ℓ, j , ±1 we find

2⟨Q[Ψ20[u1, u1], eℓ], e∗j ⟩ = 2q0

for j = ℓ and zero otherwise due to non-resonance with 2k1.
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As to 4PQ[u1,Ψ20[u1, ·]] we first compute, since ℓ, j ∈ {±2,±3} and the only contribution
comes from a triad k1 + kℓ = k−j that

Ψ20[u1, eℓ] = −L−1
0 PhQ[u1, eℓ]

= −L−1
0 (Q[E0, E0]ei(k1+kℓ )·x − ⟨Q[E0, E0], E∗

0 ⟩E0eik j ·x)

= −(−k2
c D + L)−1(Q[E0, E0] − ⟨Q[E0, E0], E∗

0 ⟩E0)eik j ·x = Q1eik j ·x,

with Q1 as in the theorem statement. Substitution into 4PQ[u1,Ψ20[u1, ·]] gives

4⟨Q[u1,Ψ20[u1, eℓ]], e∗j ⟩ = 8⟨Q[E0,Q1], E∗
0 ⟩ = 8q1,

for ℓ = j, and zero otherwise.
As to the third term, triads k1 + kℓ = k−j give the only non-trivial term

2⟨L(µ1)Ψ20[u1, eℓ], e∗j ⟩ = 2⟨(−2κ̃′kcD + iβ′kckℓB)Q1, E∗
0 ⟩,

and its complex conjugate on the anti-diagonal of L2.
For the fourth term 2PQ[Ψ11[µ1, u1], ·], the characteristic equation of the centre manifold to

order uµ gives L0Ψ11 = −Ph∂µL(0), which means

Ψ11[µ1, u1] = −L−1
0 (iβ′kcBu1 − 2κ̃′kcDu1)

= iβ′wAβ(eix − e−ix) + κ̃′wAκ̃(eix + e−ix)

note PBu1 = 0 by choice of c and PDu1 = 0 as remarked earlier. Therefore, only triads
k1 + kℓ = k−j give the nontrivial term

2⟨Q[Ψ11[µ1, u1], eℓ], e∗j ⟩ = 2⟨Q[iβ′wAβ + κ̃
′wAκ̃, E0], E∗

0 ⟩.

The final quadratic term is 2PQ[u1,Ψ11[µ1, ·]]. Here, the triads k1 + kℓ = k−j give the
nontrivial term

2⟨Q[u1,Ψ11[µ1, eℓ]], e∗j ⟩ = 2⟨Q[E0, iβ′kℓwAβ + κ̃
′wAκ̃], E∗

0 ⟩.

Together with the previous two terms, the anti-diagonal terms generate p(µ1) and its complex

conjugated, i.e. the matrix

(
0 p(µ1)

p(µ1) 0

)
.
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Abbreviations and symbols

CTRW Continuous-time random walks

ILT Inverse Laplace transform

KPP Kolmogorov–Petrovsky–Piskunov

MSD Mean squared displacement

PDF Probability density function

RD Reaction-diffusion

SH Swift-Hohenberg

Cn n-dimensional complex space; C – complex plane

N {0, 1, 2, . . . }

Q The set of rational numbers

Rn n-dimensional real Euclidean space, R = R1

Z+ The set of positive integers

Br (x) Open ball in C with centre x and radius r > 0, i.e., {y ∈ C : |x − y | < r}

∂Br (x) Boundary of Br (x)

Ω Usually a domain in C or Rn

Skc Skc ⊂ R
2 the circle of radius kc with centre (0, 0)

S1 S1 ⊂ R2 the circle of radius 1 with centre (0, 0)

arg Argument of a complex value

Im Imaginary part of a complex number

Re Real part of a complex number

sgn Sign function
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138 Abbreviations and symbols

argmax Argument of the maximum argmax f (x) = {x ∈ X : ∀y ∈ X, f (y) ≤

f (x)}

Γ Gamma function

o(ε) limε→ε0 |o(ε)/ε | = 0

O(ε) limε→ε0 |O(ε)/ε | ≤ M < ∞

W Wright function

∆ Laplace operator ∂2
x1 + · · · + ∂

2
xn

D
−γ
0,t Fractional integral of order γ ∈ (0, 1); (D−1

0,t f )(t) =
∫ t

0 f (s)ds

D
1−γ
0,t Riemann-Liouville fractional derivative of order γ ∈ (0, 1)

Dα
0,t Grünwald-Letnikov fractional derivative of order α ∈ (0, 1)

det(A) Determinant of the matrix A

Id Identity operator (matrix)

L Usually a linear operator

L∗ Adjoint operator of the linear operator L

diag(d1, . . . , dn) n × n diagonal matrix with diagonal entries d1, . . . , dn

tr(A) Trace of the matrix A

AT Transpose of the matrix A

e0, e∗0 Kernel eigenvectors of linear operators L0 and L∗
0

E0, E∗
0 Kernel eigenvectors of matrices A and AT

X,Y Some Banach spaces

AC([a, b]) Space of absolutely continuous functions from [a, b] to C

C(U) Space of continuous functions from U to C

Ck(U) Space of k-times continuously differentiable functions from U to C

Ck(X,Y ) Space of k-times continuously differentiable functions from X to Y

Lp(Ω) Space of Lebesgue measurable functions from Ω to C

Hm(Ω) Sobolev space Hm(Ω) = { f ∈ L2(Ω) : Dα f = ∂|α | f

∂x
α1
1 · · ·∂xαn

n
∈ L2(Ω), ∀α ∈

Nn, |α | = α1 + · · · + αn ≤ m}

Hm
per(0, L) = { f ∈ Hm(Ω) : Dα f (·) = Dα f (· + L), ∀α ∈ Nn, bounded Ω ⊂ R}

X(U;Y (Ω)) = {f : U → Y (Ω) : [f(t)](x) := f (x, t), f (·, t) ∈ Y (Ω) for any fixed t ∈

U, f (x, ·) ∈ X(U) for any fixed x ∈ Ω}
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F, ·̂ Fourier transform

L Laplace transform

f ∗ g Time convolution ( f ∗ g)(t) =
∫ t

0 f (t − s)g(s)ds; space convolution ( f ∗

g)(x) =
∫
Rn

f (x − y)g(y)dy

⟨ f , g⟩ Inner product in L2(Ω) or C2
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