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OSCILLATION OF SOLUTIONS TO NEUTRAL NONLINEAR

IMPULSIVE HYPERBOLIC EQUATIONS WITH

SEVERAL DELAYS

JICHEN YANG, ANPING LIU, GUANGJIE LIU

Abstract. In this article, we study oscillatory properties of solutions to neu-

tral nonlinear impulsive hyperbolic partial differential equations with several
delays. We establish sufficient conditions for oscillation of all solutions.

1. Introduction

The theory of partial differential equations can be applied to many fields, such as
to biology, population growth, engineering, generic repression, control theory and
climate model. In the last few years, the fundamental theory of partial differen-
tial equations with deviating argument has undergone intensive development. The
qualitative theory of this class of equations, however, is still in an initial stage of
development. Many srudies have been done under the assumption that the state
variables and system parameters change continuously. However, one may easily
visualize situations in nature where abrupt change such as shock and disasters may
occur. These phenomena are short-time perturbations whose duration is negligi-
ble in comparison with the duration of the whole evolution process. Consequently,
it is natural to assume, in modeling these problems, that these perturbations act
instantaneously, that is, in the form of impulses.

In 1991, the first paper [4] on this class of equations was published. However,
on oscillation theory of impulsive partial differential equations only a few of papers
have been published. Recently, Bainov, Minchev, Liu and Luo [1, 2, 6, 7, 8, 9, 10, 11]
investigated the oscillation of solutions of impulsive partial differential equations
with or without deviating argument. But there is a scarcity in the study of oscilla-
tion theory of nonlinear impulsive hyperbolic equations of neutral type with several
delays.
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In this article, we discuss oscillatory properties of solutions for the nonlinear
impulsive hyperbolic equation of neutral type with several delays.

∂2

∂t2

[
u(t, x) +

m∑
i=1

giu(t− τi, x)
]

= a(t)h(u)∆u− q(t, x)f(u(t, x)) +

l∑
r=1

ar(t)hr(u(t− σr, x))∆u(t− σr, x)

−
n∑
j=1

qj(t, x)fj(u(t− ρj , x)), t 6= tk, (t, x) ∈ R+ × Ω = G,

(1.1)

u(t+k , x) = hk(tk, x, u(tk, x)), k = 1, 2, . . . , (1.2)

ut(t
+
k , x) = pk(tk, x, ut(tk, x)), k = 1, 2, . . . , (1.3)

with the boundary conditions

u = 0, (t, x) ∈ R+ × ∂Ω, (1.4)

∂u

∂n
+ ϕ(t, x)u = 0, (t, x) ∈ R+ × ∂Ω, (1.5)

and the initial condition

u(t, x) = Φ(t, x),
∂u(t, x)

∂t
= Ψ(t, x), (t, x) ∈ [−δ, 0]× Ω.

Here Ω ⊂ RN is a bounded domain with boundary ∂Ω smooth enough and n is a
unit exterior normal vector of ∂Ω, δ = max{τi, σr, ρj}, Φ(t, x) ∈ C2([−δ, 0]×Ω,R),
Ψ(t, x) ∈ C1([−δ, 0]× Ω,R).

This article is organized as follows. in Section 2, we study the oscillatory prop-
erties of solutions for problems (1.1), (1.4). In Section 3, we discuss oscillatory
properties of solutions for problems (1.1), (1.5).

We will use the following conditions:

(H1) a(t), ai(t) ∈ PC(R+,R+), τi, σr, ρj are positive constants, q(t, x), qj(t, x)
are functions in C(R+×Ω̄, (0,∞)), gi is a non-negative constant,

∑m
i=1 gi <

1, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, r = 1, 2, . . . , l; where PC denote the class
of functions which are piecewise continuous in t with discontinuities of first
kind only at t = tk, k = 1, 2, . . . , and left continuous at t = tk, k = 1, 2, . . . .

(H2) h(u), hr(u) ∈ C1(R,R), f(u), fr(u) ∈ C(R,R); f(u)/u ≥ C a positive
constant, fj(u)/u ≥ Cj a positive constant, u 6= 0; h(0) = 0, hr(0) =
0, uh′(u) ≥ 0, uh′r(u) ≥ 0, ϕ(t, x) ∈ C(R+ × ∂Ω,R), h(u)ϕ(t, x) ≥ 0,
hr(u)ϕ(t − σr, x) ≥ 0, r = 1, 2, . . . , l, 0 < t1 < t2 < · · · < tk < . . . ,
limk→∞ tk =∞.

(H3) u(t, x) and their derivatives ut(t, x) are piecewise continuous in t with dis-
continuities of first kind only at t = tk, k = 1, 2, . . . , and left continuous at
t = tk, u(tk, x) = u(t−k , x), ut(tk, x) = ut(t

−
k , x), k = 1, 2, . . . .

(H4) hk(tk, x, u(tk, x)), pk(tk, x, ut(tk, x)) ∈ PC(R+ × Ω̄ × R,R), k = 1, 2, . . . ,
and there exist positive constants ak, ak, bk, bk and bk ≤ ak such that for
k = 1, 2, . . . ,

ak ≤
hk(tk, x, η)

η
≤ ak, bk ≤

pk(tk, x, φ)

φ
≤ bk.
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Let us construct the sequence {t̄k} = {tk} ∪ {tki} ∪ {tkr} ∪ {tkj}, where
tki = tk + τi, tkr = tk + σr, tkj = tk + ρj and t̄k < t̄k+1, i = 1, 2, . . . ,m,
r = 1, 2, . . . , l, j = 1, 2, . . . , n, k = 1, 2, . . . .

Definition 1.1. By a solution of problems (1.1), (1.4) ((1.5)) with initial condition,
we mean that any function u(t, x) for which the following conditions are valid:

(1) If −δ ≤ t ≤ 0, then u(t, x) = Φ(t, x), ∂u(t,x)
∂t = Ψ(t, x).

(2) If 0 ≤ t ≤ t̄1 = t1, then u(t, x) coincides with the solution of the problems
(1.1)–(1.3) and (1.4) ((1.5)) with initial condition.

(3) If t̄k < t ≤ t̄k+1, t̄k ∈ {tk} \ ({tki} ∪ {tkr} ∪ {tkj}), then u(t, x) coincides
with the solution of the problems (1.1)–(1.3) and (1.4) ((1.5)).

(4) If t̄k < t ≤ t̄k+1, t̄k ∈ {tki}∪{tkr}∪{tkj}, then u(t, x) satisfies (1.4) ((1.5))
and coincides with the solution of the problem

∂2

∂t2

[
u(t+, x) +

m∑
i=1

giu((t− τi)+, x)
]

= a(t)h(u(t+, x))∆u(t+, x)− q(t, x)f(u(t+, x))

+

l∑
r=1

ar(t)hr(u((t− σr)+, x))∆u((t− σr)+, x)

−
n∑
j=1

qj(t, x)fj(u((t− ρj)+, x)), t 6= tk, (t, x) ∈ R+ × Ω = G,

u(t̄+k , x) = u(t̄k, x), ut(t̄
+
k , x) = ut(t̄k, x),

fort̄k ∈ ({tki} ∪ {tkr} ∪ {tkj}) \ {tk},

or

u(t̄+k , x) = hki(t̄k, x, u(t̄k, x)), ut(t̄
+
k , x) = pki(t̄k, x, ut(t̄k, x)),

for t̄k ∈ ({tki} ∪ {tkr} ∪ {tkj}) ∩ {tk},

where the number ki is determined by the equality t̄k = tki .

We introduce the notation:

Γk = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω}, Γ = ∪∞k=0Γk,

Γ̄k = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω̄}, Γ̄ = ∪∞k=0Γ̄k,

v(t) =

∫
Ω

u(t, x) dx, q(t) = min
x∈Ω̄

q(t, x), qj(t) = min
x∈Ω̄

qj(t, x).

Definition 1.2. The solution u ∈ C2(Γ)∩C1(Γ̄) of problems (1.1), (1.4) ((1.5)) is
called non-oscillatory in the domain G if it is either eventually positive or eventually
negative. Otherwise, it is called oscillatory.

2. Oscillation properties for (1.1), (1.4)

For the main result of this article, we need following lemmas.
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Lemma 2.1. Let u ∈ C2(Γ) ∩ C1(Γ̄) be a positive solution of (1.1), (1.4) in G,
then function w(t) satisfies the impulsive differential inequality

w′′(t) + C
(

1−
m∑
i=1

gi

)
q(t)w(t) +

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t)w(t− ρj) ≤ 0, t 6= tk,

(2.1)

ak ≤
w(t+k )

w(tk)
≤ ak, k = 1, 2, . . . , (2.2)

bk ≤
w′(t+k )

w′(tk)
≤ bk, k = 1, 2, . . . , (2.3)

where w(t) = v(t) +
∑m
i=1 giv(t− τi).

Proof. Let u(t, x) be a positive solution of the problem (1.1), (1.4) in G. Without
loss of generality, we may assume that there exists a T > 0, t0 > T such that
u(t, x) > 0, u(t − τi, x) > 0, i = 1, 2, . . . ,m, u(t − σr, x) > 0, r = 1, 2, . . . , l,
u(t− ρj , x) > 0, j = 1, 2, . . . n, for any (t, x) ∈ [t0,∞)× Ω.

For t ≥ t0, t 6= tk, k = 1, 2, . . . , integrating (1.1) with respect to x over Ω yields

d2

dt2

[ ∫
Ω

u(t, x) dx+

m∑
i=1

gi

∫
Ω

u(t− τi, x) dx
]

= a(t)

∫
Ω

h(u)∆u dx−
∫

Ω

q(t, x)f(u(t, x)) dx

+

l∑
r=1

ar(t)

∫
Ω

hr(u(t− σr, x))∆u(t− σr, x) dx

−
n∑
j=1

∫
Ω

qj(t, x)fj(u(t− ρj , x)) dx.

By Green’s formula and the boundary condition, we have∫
Ω

h(u)∆u dx =

∫
∂Ω

h(u)
∂u

∂n
ds−

∫
Ω

h′(u)|gradu|2 dx

= −
∫

Ω

h′(u)|gradu|2 dx ≤ 0,

∫
Ω

hr(u(t− σr, x))∆u(t− σr, x) dx ≤ 0.

From condition (H2), we can easily obtain∫
Ω

q(t, x)f(u(t, x)) dx ≥ Cq(t)
∫

Ω

u(t, x) dx,∫
Ω

qj(t, x)fj(u(t− ρj , x)) dx ≥ Cjqj(t)
∫

Ω

u(t− ρj , x) dx.

From the above it follows that

d2

dt2

[
v(t) +

m∑
i=1

giv(t− τi)
]

+ Cq(t)v(t) +

n∑
j=1

Cjqj(t)v(t− ρj) ≤ 0.
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Set w(t) = v(t) +
∑m
i=1 giv(t− τi), we have w(t) ≥ v(t), then we can obtain

w′′(t) + Cq(t)v(t) +

n∑
j=1

Cjqj(t)v(t− ρj) ≤ 0, t 6= tk.

From this inequality, we have w′′(t) < 0, and w′(t) > 0, w(t) > 0 for t ≥ t0. In
fact, if w′(t) < 0, there exists t1 ≥ t0 such that w′(t1) < 0. Hence we have

w(t)− w(t1) =

∫ t

t1

w′(s)ds ≤
∫ t

t1

w′(t1)ds = w′(t1)(t− t1),

lim
t→+∞

w(t) = −∞.

This is a contradiction, so w′(t) > 0. Because

v(t) = w(t)−
m∑
i=1

giv(t− τi)

= w(t)−
m∑
i=1

gi

[
w(t− τi)−

m∑
i=1

giv(t− 2τi)
]

= w(t)−
m∑
i=1

giw(t− τi) +

m∑
i=1

gi

[ m∑
i=1

giv(t− 2τi)
]

≥
(

1−
m∑
i=1

gi

)
w(t),

v(t− ρj) ≥
(

1−
m∑
i=1

gi

)
w(t− ρj).

Hence, we obtain

w′′(t) + C
(

1−
m∑
i=1

gi

)
q(t)w(t) +

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t)w(t− ρj) ≤ 0, t 6= tk.

For t ≥ t0, t = tk, k = 1, 2, . . . , from (1.2), (1.3) and condition (H4), we obtain

ak ≤
u(t+k , x)

u(tk, x)
≤ ak, (2.4)

bk ≤
ut(t

+
k , x)

ut(tk, x)
≤ bk. (2.5)

According to the v(t) =
∫

Ω
u(t, x) dx, we obtain

ak ≤
v(t+k )

v(tk)
≤ ak, bk ≤

v′(t+k )

v′(tk)
≤ bk.

Because w(t) = v(t) +
∑m
i=1 giv(t− τi), we finally have

ak ≤
w(t+k )

w(tk)
≤ ak, bk ≤

w′(t+k )

w′(tk)
≤ bk.

Hence we obtain that w(t) is a solution of impulsive differential inequality (2.1)–
(2.3). This completes the proof. �

Lemma 2.2 ([5, Theorem 1.4.1]). Assume that

(A1) the sequence {tk} satisfies 0 < t0 < t1 < t2 < . . . , limk→∞ tk =∞;
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(A2) m(t) ∈ PC1[R+,R] is left continuous at tk for k = 1, 2, . . . ;
(A3) for k = 1, 2, . . . and t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t), t 6= tk,

m(t+k ) ≤ dkm(tk) + ek,

where p(t), q(t) ∈ C(R+,R), dk ≥ 0 and ek are constants. PC denote the
class of piecewise continuous function from R+ to R, with discontinuities
of the first kind only at t = tk, k = 1, 2, . . . .

Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp
(∫ t

t0

p(s)ds
)

+

∫ t

t0

∏
s<tk<t

dk exp
(∫ t

s

p(r)dr
)
q(s)ds

+
∑

t0<tk<t

∏
tk<tj<t

dj exp
(∫ t

tk

p(s)ds
)
ek.

Lemma 2.3 ([11]). Let w(t) be an eventually positive (negative) solution of the
differential inequality (2.1)–(2.3). Assume that there exists T ≥ t0 such that w(t) >
0 (w(t) < 0) for t ≥ T . If

lim
t→+∞

∫ t

t0

∏
t0<tk<s

bk
ak
ds = +∞ (2.6)

hold, then w′(t) ≥ 0 (w′(t) ≤ 0) for t ∈ [T, tl]∪
(
∪+∞
k=l (tk, tk+1]

)
, where l = min{k :

tk ≥ T}.

The following theorem is the first main result of this article.

Theorem 2.4. If condition (2.6) and the following condition holds,

lim
t→+∞

∫ t

t0

∏
t0<tk<s

ak
bk
F (s)ds = +∞, (2.7)

where

F (s) = C
(

1−
m∑
i=1

gi

)
q(s) +

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(s) exp(−δz(t0)).

Then each solution of (1.1)–(1.3), (1.4) oscillates in G.

Proof. Let u(t, x) be a non-oscillatory solution of (1.1), (1.4). Without loss of
generality, we can assume that there exists T > 0, t0 ≥ T , such that u(t, x) > 0,
u(t − τi, x) > 0, i = 1, 2, . . . ,m, u(t − σr, x) > 0, r = 1, 2, . . . , l, u(t − ρj , x) > 0,
j = 1, 2, . . . , n for any (t, x) ∈ [t0,∞)× Ω. From Lemma 2.1, we know that w(t) is
a solution of (2.1)–(2.3).

For t ≥ t0, t 6= tk, k = 1, 2, . . . , define

z(t) =
w′(t)

w(t)
, t ≥ t0. (2.8)

From Lemma 2.3, we have z(t) ≥ 0, t ≥ t0, w
′(t) − z(t)w(t) = 0. We may assume

that w(t0) = 1, thus in view of (2.1)–(2.3) we have that for t ≥ t0,

w(t) = exp
(∫ t

t0

z(s)ds
)
, (2.9)
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w′(t) = z(t) exp
(∫ t

t0

z(s)ds
)
, (2.10)

w′′(t) = z2(t) exp
(∫ t

t0

z(s)ds
)

+ z′(t) exp
(∫ t

t0

z(s)ds
)
. (2.11)

We substitute (2.9)–(2.11) into (2.1) and obtain

z2(t) exp
(∫ t

t0

z(s)ds
)

+ z′(t) exp
(∫ t

t0

z(s)ds
)

+ C
(

1−
m∑
i=1

gi

)
q(t) exp

(∫ t

t0

z(s)ds
)

+

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qi(t) exp

(∫ t−ρj

t0

z(s)ds
)
≤ 0.

Hence we have

z2(t) + z′(t) + C
(

1−
m∑
i=1

gi

)
q(t)

+

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t) exp

(
−
∫ t

t−ρj
z(s)ds

)
≤ 0, t 6= tk,

then we have

z′(t) + C
(

1−
m∑
i=1

gi

)
q(t)

+

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t) exp

(
−
∫ t

t−ρj
z(s)ds

)
≤ 0, t 6= tk.

From above inequality and condition bk ≤ ak, we know that z(t) is non-increasing,
then z(t) ≤ z(t0), for t ≥ t0, we obtain

z′(t) + C
(

1−
m∑
i=1

gi

)
q(t) +

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t) exp(−δz(t0)) ≤ 0, t 6= tk.

From (2.2), (2.3) and (2.8), we obtain

z(t+k ) =
w′(t+k )

w(t+k )
≤ bkw

′(tk)

akw(tk)
=
bk
ak
z(tk),

so we can easily obtain

z′(t) ≤ −C
(

1−
m∑
i=1

gi

)
q(t)−

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t) exp(−δz(t0)) t 6= tk,

z(t+k ) ≤ bk
ak
z(tk).

Let

−F (t) = −C
(

1−
m∑
i=1

gi

)
q(t)−

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t) exp(−δz(t0)).
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Then according to Lemma 2.2, we have

z(t) ≤ z(t0)
∏

t0<tk<t

bk
ak

+

∫ t

t0

∏
s<tk<t

bk
ak

(−F (s)) ds

=
∏

t0<tk<t

bk
ak

[
z(t0)−

∫ t

t0

∏
t0<tk<s

ak
bk
F (s)ds

]
< 0.

Since z(t) ≥ 0, this is a contradiction. The proof is complete. �

3. Oscillation properties of the problem (1.1), (1.5)

For the second main theorem, we need following lemma.

Lemma 3.1. Let u ∈ C2(Γ) ∩ C1(Γ̄) be a positive solution of (1.1), (1.5) in G,
then function w(t) satisfies the impulsive differential inequality

w′′(t) + C
(

1−
m∑
i=1

gi

)
q(t)w(t) +

n∑
j=1

Cj

(
1−

m∑
i=1

gi

)
qj(t)w(t− ρj) ≤ 0, t 6= tk,

(3.1)

ak ≤
w(t+k )

w(tk)
≤ ak, k = 1, 2, . . . , (3.2)

bk ≤
w′(t+k )

w′(tk)
≤ bk, k = 1, 2, . . . , (3.3)

where w(t) = v(t) +
∑m
i=1 giv(t− τi).

Proof. Let u(t, x) be a positive solution of the problem (1.1), (1.5) in G. Without
loss of generality, we may assume that there exists a T > 0, t0 > T such that
u(t, x) > 0, u(t − τi, x) > 0, i = 1, 2, . . . ,m, u(t − σr, x) > 0, r = 1, 2, . . . , l,
u(t − ρj , x) > 0, j = 1, 2, . . . n, for any (t, x) ∈ [t0,∞) × Ω. For t ≥ t0, t 6= tk,
k = 1, 2, . . . , integrating (1.1) with respect to x over Ω yields

d2

dt2

[ ∫
Ω

u(t, x) dx+

m∑
i=1

gi

∫
Ω

u(t− τi, x) dx
]

= a(t)

∫
Ω

h(u)∆u dx−
∫

Ω

q(t, x)f(u(t, x)) dx

+

l∑
r=1

ar(t)

∫
Ω

hr(u(t− σr, x))∆u(t− σr, x) dx

−
n∑
j=1

∫
Ω

qj(t, x)fj(u(t− ρj , x)) dx.

By Green’s formula and the boundary condition, we have∫
Ω

h(u)∆u dx =

∫
∂Ω

h(u)
∂u

∂n
ds−

∫
Ω

h′(u)|gradu|2 dx

= −
∫
∂Ω

h(u)ϕ(t, x)u ds−
∫

Ω

h′(u)|gradu|2 dx

≤ −
∫

Ω

h′(u)|gradu|2 dx ≤ 0,
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Ω

hr(u(t− σr, x))∆u(t− σr, x) dx ≤ 0.

The rest of the proof is similar to the one in Lemma 2.1. We omit it. �

The following theorem is the second main result of this article.

Theorem 3.2. If conditions (2.6) and (2.7) hold, then each solution of (1.1)–(1.3),
(1.5) oscillates in G.

The proof of the above theorem is similar to that of Theorem 2.4. We omit it.

4. Examples

Example 4.1. Consider the equation

∂2

∂t2

[
u(t, x) +

1

2
u(t− π

2
, x)
]

= u2∆u− ueu
2

+ etu2(t− π

2
, x)∆u(t− π

2
, x)

− (x2 + 1)etu(t− 3π

2
, x)eu

2(t− 3π
2 ,x),

t > 1, t 6= 2k, (t, x) ∈ R+ × Ω = G,

u((2k)+, x) = (4 + sin 2k cosx)u(2k, x), k = 1, 2, . . . ,

ut((2
k)+, x) = (2 + sin 2k cosx)ut(2

k, x), k = 1, 2, . . . ,

with the boundary condition

u = 0, (t, x) ∈ R+ × ∂Ω,

where a(t) = 1, a1(t) = et, τ1 = π
2 , σ1 = π

2 , ρ1 = 3π
2 , h(u) = u2, h1(u) = u2,

f(u) = ueu
2

, f1(u) = ueu
2

, q(t, x) = 1, q1(t, x) = (x2 + 1)et, g1 = 1
2 , tk = 2k. It is

easy to verify that the condition (H1)–(H4) and the conditions of Theorem 2.4 are
satisfied. Hence the all solutions of above problem oscillate.

Example 4.2. Consider the equation

∂2

∂t2

[
u(t, x) +

1

2
u(t− π

2
, x)
]

= u2∆u− ueu
2

+ etu2(t− π

2
, x)∆u(t− π

2
, x)− (x2 + 1)etu(t− 3π

2
, x)eu

2(t− 3π
2 ,x),

t > 1, t 6= 3k, (t, x) ∈ R+ × Ω = G,

u((3k)+, x) = (4 + sin 3k cosx)u(3k, x), k = 1, 2, . . . ,

ut((3k)+, x) = (2 + sin 3k cosx)ut(3k, x), k = 1, 2, . . . ,

with the boundary condition

∂u

∂n
+ t2x2u = 0, (t, x) ∈ R+ × ∂Ω,

where a(t) = 1, a1(t) = et, τ1 = π
2 , σ1 = π

2 , ρ1 = 3π
2 , h(u) = u2, h1(u) = u2,

f(u) = ueu
2

, f1(u) = ueu
2

, q(t, x) = 1, q1(t, x) = (x2 + 1)et, g1 = 1
2 , tk = 3k,

ϕ(t, x) = t2x2. It is easy to verify that the condition H) and condition of Theorem
3.2 are satisfied. Hence the all solutions of the above problem oscillate.
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