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Abstract. It is well known that for reaction-diffusion systems with differential isotropic dif-
fusions, a Turing instability yields striped solutions. In this paper we study the impact of weak
anisotropy by directional advection on such solutions, and the role of quadratic terms. We focus on
the generic form of planar reaction-diffusion systems with two components near such a bifurcation.
Using Lyapunov-Schmidt reduction and Floquet-Bloch decomposition we derive a rigorous parameter
expansion for existence and stability against large wavelength perturbations. This provides detailed
formulae for the loci of bifurcations and so-called Eckhaus as well as zigzag stability boundaries
under the influence of the advection and quadratic terms. In particular, while destabilisation of the
background state is through modes perpendicular to the advection (Squire-theorem), we show that
stripes can bifurcate zigzag unstably. We illustrate these results numerically by an example. Finally,
we show numerical computations of these stability boundaries in the extended Klausmeier model for
vegetation patterns and show stripes bifurcate stably in the presence of advection.
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1. Introduction. It is well known that from the ubiquitous spatially isotropic
Turing instabilities various patterned solutions bifurcate. In one dimension the basic
spatially periodic ones are wavetrains, which trivially extend to stripe solutions in
two space dimensions, where they are in competition with hexagonal and square
shaped states, e.g., [7]. The question arises, which pattern is selected at onset of the
instability. It is well known that in the isotropic situation stripes are unstable with
respect to modes on the hexagonal lattice near onset in the presence of a generic
quadratic term in the nonlinearity. In [6] this has been discussed in the context of
vegetation patterns. In contrast, it has been found in [17] that in a sloped terrain, the
vegetation patterns, i.e. the stripes, are stable at onset. Here the slope is modelled
by an advective term in the water component, which breaks the spatial isotropy.
Indeed, from a symmetry perspective for weakly anisotropic perturbations and on the
hexagonal lattice this has been predicted already in [2]. The destabilising effect of
advection terms on homogeneous states have been broadly studied in the context of
differential flows, e.g., [14, 9, 4] and also appear in ecology, e.g., [19, 3, 1], where we
believe our results can also be useful.

In this paper we study the stability of stripes in reaction-diffusion systems for
weak anisotropy regarding large wavelength perturbations; a forthcoming paper will
consider hexagonal modes. We are particularly interested in refining the results of [17]
which indicate a stabilising effect of advection for stripes aligned with this. In particu-
lar, it was proven that the onset of instability of the homogeneous state, i.e., the nature
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of the Turing-Hopf instability, is due to one-dimensional modes (a ‘Squire’-theorem).
However we shall explain below that this does not necessarily imply stability of bifur-
cating stripes.

Large wavelength modes, also called sideband modes, are well understood in one
space dimension through the Ginzburg-Landau formalism, e.g., [7, 5, 16], most di-
rectly from the fourth order Swift-Hohenberg equation. Here only sideband modes
are relevant and the so-called Eckhaus region describes the stability boundary, which
is crossed when stretching or compressing the wavetrains too much. In two space
dimensions, instabilities along the stripe that is formed by trivially extending the one-
dimensional wavetrain, become additionally relevant. The large wavelength modes of
this type give rise to the so-called zigzag stability boundary. It is well known that for
the Swift-Hohenberg this is crossed when wavetrains are stretched by any amount in
the isotropic case, but detailed rigorous studies for reaction diffusion systems (even
without advection) seem scarce; in [12] a reduction to nearly hexagonal lattices is
applied. Indeed, zigzag stability can also be studied with the aid of a modulation
equation, the so-called Newell-Whitehead-Segal equation, again most directly linked
with the Swift-Hohenberg equation [7].

In this paper we take a direct approach and first study the existence of stripes
with detailed expansions by Lyapunov-Schmidt reduction and then analyse the large
wavelength stability via Floquet-Bloch decomposition in the spirit of [10, 13, 5]. The
advantages of this approach are that it is fully rigorous and that we gain direct access
to all relevant characteristic quantities in terms of the advection, the quadratic terms,
stretching and compressing. A particular motivation is to augment the discussion of
stripe stability in [17] for a variant of the Klausmeier model, where small advection
and zigzag modes were not considered in any detail, cf. §5.2.

The approach applies to arbitrary number of components, but the parameter
spaces and determination of signs of relevant characteristics become analytically less
accessible for more than two components. Hence we restrict our attention to this case.

Upon changing coordinates, the generic form of such a system up to cubic non-
linearity reads

ut = D∆u+ Lu+ α̌Mu+ βBux +Q[u, u] +K[u, u, u], x ∈ R2(1.1)

with multilinear functions Q,K and diagonal diffusion matrix D > 0; higher order
nonlinear terms can be added without change to our results near bifurcation. We
assume that for α̌ = β = 0 the zero steady state is at a Turing instability with
wavenumber kc, cf. Definition 2.1 below, and that α̌ moves the spectrum through the
origin. The isotropy is broken for β 6= 0, and we assume differential advection

B = B(c) =

(
1 + c 0

0 c

)
, c ∈ R,

which can be realised under the natural assumption of uni-directional anisotropy.
Note that βc∂x appears in both equations as a comoving frame in the x-direction.

Our main results may be summarised as follows. Here the parameters are µ =
(α, β, κ̃) where α = λM α̌ for certain λM 6= 0 and κ̃ = κ − kc is the deviation of
the stripes’ nonlinear wavenumber from kc, i.e., the stripes’ spatial period is 2π/κ.
Throughout we consider |µ| � 1, and consider stripes Us(x;µ) that are constant in y

with amplitude parameter A = ‖Ûs(1;µ)‖ the norm of the first Fourier mode.
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(a) (b)

Fig. 1.1. We plot sketches of the leading order existence and stability boundaries near the
Turing bifurcation point at the origin in (a). Stripes exist in the complement of the dark grey
regions. Hatched region: Eckhaus unstable. Light grey region: zigzag unstable. (a) β = 0, M = Id,
Q = 0, (b) sample for β 6= 0, M 6= Id, Q 6= 0. Note in (b) the existence and Eckhaus boundaries are
shifted downwards, the zigzag boundary is tilted and the attachment point to the existence shifted.

Existence of stripes (Theorem 3.1). The existence of striped solutions Us(x;µ) to
(1.1) with small amplitude A near the onset of the Turing instability is equivalent to
solving an algebraic equation

α+ ρββ
2 + ρκ̃κ̃

2 + ρnlA
2 = 0,

where ρβ , ρκ̃ are determined by the linearisation in u = 0, and ρnl involves the non-
linear terms. We have ρβ > 0, ρκ̃ < 0 so that the bifurcation loci form a hyperbolic
paraboloid, and in the supercritical case ρnl < 0 the corresponding amplitudes A fol-
low a family of supercritical pitchfork bifurcations, cf. Fig. 1.1 (dashed curves). We
provide an expansion of Us(x;µ) in the parameters and the velocity parameter c is a
function of µ that is to leading order affine in α, κ̃. For direction of the stripe motion
βc we have sgn(c) = −sgn(a1), i.e., in case the first component is an inhibitor the
motion is with β, and it is opposite β if it is an activator.

Having established the existence of stripes, we obtain the following results con-
cerning large-wavelength stability. The stability or instability of stripes against the
large wavelength perturbations parallel and orthogonal to the stripes, is referred to as
zigzag and Eckhaus in/stability, respectively. Our results on these two types of insta-
bility at the onset of Turing bifurcation may be summarised as follows, cf. Theorem
4.1 & 4.4.

Zigzag instability. We determine the leading order curvature of the spectrum for
modes parallel to the stripes as

kcρκ̃κ̃+ ρα̌α+ ρβββ
2,

which means zigzag instability for a positive value. For ρα̌ = 0 the leading order
zigzag boundary is independent of α as in the aforementioned isotropic case of Swift-
Hohenberg. It turns out that ρα̌ = a+ b, where a = 0 if M = Id and b = 0 if Q = 0,
which highlights the impact of non-trivial M and the quadratic term. The sign of
ρββ determines whether β has a stabilising or destabilising effect, and we determine
this for ‘small’ Q. It turns out that if the first component is the inhibitor, a1 < 0,
then ρββ < 0. However, the different combinations of signs allow to move and tilt
the zigzag boundary, cf. Fig. 4.1. In particular, it is possible that stripes are zigzag
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unstable at onset, which shows a limitation of the ‘Squire theorem’ of [17], i.e., the fact
that a homogeneous steady state is always destabilised by modes that are constant in
the direction perpendicular to the advection.

Eckhaus instability. To leading order the curvature of the spectrum for modes
orthogonal to the stripe has the sign of

−(α̃+ 3ρκ̃κ̃
2),

where α̃ = α + ρββ
2 is the deviation from the bifurcation loci. Hence, in terms of

α̃ the leading order curvature is independent of the advection β, and just according
to the well-known Eckhaus boundary as a function of κ̃, cf. Fig. 1.1 (solid curves).
Thus, in contrast to the zigzag instability, relative to the bifurcation loci there is no
leading order impact of the advection on this large wavelength stability. Nevertheless,
for fixed unfolding parameter α the interval of stable κ̃ is larger, i.e., stripes are more
resilient to stretching/compressing compared to the isotropic case.

This paper provides a first step to understand analytically and in detail the sta-
bility of stripes in (1.1) under the influence of advection on the plane x ∈ R2. As
mentioned, the natural next step is to study stability on lattices, in particular (near)
hexagonal lattices as, e.g., in [2, 6]. This is the subject of a forthcoming paper, where
we give detailed expansions of the different stability boundaries that arise under in-
fluence of the advection and quadratic terms.

This paper is organised as follows: In §2 we discuss linear stability of the homo-
geneous state near the Turing instability as a preparation for the analysis of stripes.
The existence of stripes is studied in §3, and in §4 we study the large wavelength
in/stabilities, i.e., zigzag and Eckhaus in/stabilities. In §5, we illustrate these results
by a concrete example of the form (1.1) and in §5.2, we study the large wavelength
instabilities numerically for the extended Klausmeier model that was used in [17].

2. Turing instability. The linearisation of (1.1) in uhom = 0 is

L = D∆ + L+ α̌M + βB∂x,

whose spectrum is most easily studied via the Fourier transform

L̂(k, `) = −(k2 + `2)D + L+ α̌M + ikβB,

with Fourier-wavenumbers k in x-direction and ` in y-direction. It is well known,
e.g., [15], that in the common function spaces such as L2(R2) the spectrum Σ(L) of
L equals that of L̂ and is the set of roots of the (linear) dispersion relation

d(λ, k, `) = det(L̂(k, `)− λId).(2.1)

Let Skc
⊂ R2 be the circle of radius kc.

Definition 2.1. We say that α̌ = β = 0 is a (non-degenerate) Turing instability
point for uhom in (1.1) with wavelength kc if

(1) L has strictly stable spectrum Σ(L) ⊂ {λ ∈ C : Re(λ) < 0},
(2) The spectrum of L is critical for wavevectors (k, `) of length kc > 0:

d(λ, k, `) = 0 & Re(λ) ≥ 0 ⇔ λ = 0, (k, `) ∈ Skc

which in particular means Σ(L) ∩ {z ∈ C : Re(z) ≥ 0} = {0},
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(3) ∂λd 6= 0 at λ = 0 and (kc, `c) ∈ Skc
. We denote the unique continuation of

these solutions to (2.1) by λc(k, `, µ), i.e., (k, `) in a neighboorhood of Skc
.

Writing L =

(
a1 a2

a3 a4

)
, condition (1) implies negative trace of L, a1 + a4 < 0,

and positive determinant a1a4 > a2a3, and (3) implies the well known condition
d1a4 + d2a1 > 0, which together imply a2a3 < a1a4 < 0, e.g., [11].

As a first step to understand the impact of advection, the next lemma shows that,
for this two-component case, the unfolding by β is only to quadratic order.

Lemma 2.2. For the critical eigenvalues near a Turing instability of (1.1) as in
Definition 2.1 it holds for any (kc, `c) ∈ Skc that

λc(kc, `c;β) = ikc(λβ + c)β + k2
cλβββ

2 +O(|kcβ|3),

where λβ =
a4−k2

cd2
a1+a4−k2

c(d1+d2) , λββ =
(a1−k2

cd1)(a4−k2
cd2)

(a1+a4−k2
c(d1+d2))3 > 0. In particular, the real

part grows fastest for 1D-modes with `c = 0 and remains zero for transverse modes
with kc = 0.

Proof. This follows immediately from the next lemma upon setting δ = kcβ,
b1 = −(k2

c + `2c)d1 +a1, b2 = a2, b3 = a3, b4 = −(k2
c + `2c)d2 +a4 and shifting by ikcβc.

The last statement of the lemma is simply a consequence of the fact that the largest
value real part of λc is attained at the largest value of k2

c , which occurs at `c = 0 since
k2

c + `2c = k2
c .

Remark 2.3. The lemma in fact proves the plots in Figure 2 of [17] near onset.
It is well known that for a two-component system k2

c = d1a4+d2a1
2d1d2

and a2a3 = (a1 −
k2

cd1)(a4 − k2
cd2).

Lemma 2.4. For a matrix

(
b1 + iδ b2
b3 b4

)
with b1 6= 0 and simple zero eigenvalue,

the expansion of that eigenvalue reads

λ(δ) = iλ|δ + λ||δ
2 +O(|δ|3),

where λ| = b4
b1+b4

, λ|| = b1b4
(b1+b4)3 .

Proof. Straightforward implicit differentiation, expansion of characteristic poly-
nomial and use of assumptions, which in particular imply (b1 + b4)b1 6= 0.

Note that b2 = 0 or b3 = 0 is not possible due to the assumption b1 6= 0 and
b1b4 = b2b3.

Remark 2.5. For the matrix

(
b1 b2
b3 b4

)
in Lemma 2.4, i.e., δ = 0, we can choose

the kernel eigenvector E0 and the adjoint kernel eigenvector E∗0 with 〈E0, E0〉 = 1
and 〈E0, E

∗
0 〉 = 1 as

E0 = (b2,−b1)T /c0, E∗0 = (b3,−b1)T /c∗0,

with c0 :=
√
b22 + b21, c∗0 := (b2b3 + b21)/c0. Here c∗0 6= 0 since b21 + b2b3 = b21 + b1b4 =

b1(b1 + b4) 6= 0.

In contrast to β, the change of real parts of the critical eigenvalue through α̌,
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with matrix M = (mij)1≤i,j≤2, is linear with coefficient

(2.2)

λM := − ∂α̌d

∂λd

∣∣∣∣
α̌=0,λ=0

=
m11(a4 − k2

cd2)−m12a3 −m21a2 +m22(a1 − k2
cd1)

a1 + a4 − k2
c(d1 + d2)

6= 0,

where we assume λM 6= 0 throughout this paper. Notably, λM = 1 if M = Id in
which case α̌ just rigidly moves the real part of the spectrum.

In the following we therefore change parameters and use the effective impact on
the real part given by

α := λM α̌

as the new parameter so that

(2.3)
λc(kc, `c;α, β) = α+ i(kc(λβ + c) + aMλMβα)β + k2

cλβββ
2

+O(aMα
2 + |kcβ|3),

with λMβ := kc
m22−λM−(2λM−m11−m22)λβ

λM (a1+a4−k2
c(d1+d2)) , and we emphasise the special case M = Id

through the factor aM , where aM = 0 if M = Id and aM = 1 otherwise.

Here we highlight an a priori consequence for the L2(R2)-stability of striped solu-
tions Us with wavenumber κ = kc + κ̃ that are oriented orthogonal to the x-direction,
i.e., ∂yUs ≡ 0. We assume (and prove in the next section) the existence of a curve
of such striped solutions Us(x; τ) parametrised by τ ∈ [0, τ0) for some τ0 > 0, with
Us(x; 0) = 0, and corresponding parameter curve µ(τ) = (α, β, κ̃)(τ) with β(0) 6= 0,
|µ(0)| � 1, and velocity parameter c(τ).

Corollary 2.6. For 0 < τ � 1 the spectral stability in L2(R2) of Us is entirely
determined by large-wavelength modes, i.e., if Us is zigzag and Eckhaus stable then it
is spectrally stable in L2(R2).

In particular, a family with constant κ̃ = 0, i.e., stripes with wavenumber kc,
bifurcates stably, if it is zigzag-stable at onset.

Proof. Since β(0) 6= 0, by Lemma 2.2, see also the Squire-theorem [17, Theorem
2], the spectrum of Us(x; 0) = uhom with parameters µ(0), c(0) is critical only for
κ̃, ` ≈ 0. More precisely, for all sufficiently small ε > 0 there is δ > 0 such that
Re(λc(kc + κ̃, `;α(0), β(0))) < −δ for all κ̃, ` with |κ̃|, |`| > ε. It suffices to show
that the same holds for the spectrum of the linearisation Lst of (1.1) in Us for any
sufficienly small τ .

Via Floquet-Bloch decomposition, the spectrum of Lst can be encoded in a com-
plex analytic dispersion relation dst(λ, γ, `), γ ∈ [0, 2π), e.g., [10, 13, 5], and §4. Since
Lst(0) = L roots of dst converge locally uniformly in C to roots of d for k = 2πm+ γ
with suitable m ∈ Z. Hence, any spectrum that is bounded away from iR for uhom

will be bounded away from iR for all sufficiently small τ .

3. Bifurcation of stripes. Stripes are travelling waves solutions of (1.1) that
are constant in y and for any t periodic in x. In order to determine the bifurcation
of stripes it thus suffices to consider the 1D case x = x ∈ [0, 2π/κ] with periodic
boundary conditions and wavenumber κ. The definition of a Turing instability point
implies that L restricted to 1D possesses a kernel at α = β = 0 on spaces of 2π/kc-
periodic functions and upon unfolding also for nearby periods. Let us therefore rescale
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space and consider periodic boundary conditions on [0, 2π]. This modifies the linear
part (1.1) to

Lµ := κ2D∂2
x + L+ α̌M + βκB∂x

with the off-critical parameter κ̃ in κ = kc + κ̃ that allows to detects stripes with
nearby wavenumber. We recall the parameter vector µ = (α, β, κ̃). By Lemma 2.2,
(2.3), and straightforward generalisation to include κ̃, the continuation of the zero
eigenvalue of Lµ has an expansion

(3.1)
λµ = α+ ρββ

2 + ρκ̃κ̃
2 + i(γβ + γκ̃βκ̃+ aMλMβα)β

+ aMλMκ̃ακ̃+O(aMα
2 + |κ̃|3 + |β|3),

where again aM = 0 if M = Id and aM = 1 otherwise. The coefficients are

ρβ = k2
cλββ > 0, γβ = kc(λβ + c),

as in Lemma 2.2 and with γκ̃β = λκ̃β + c, the dispersion relation d(λ, k;µ) = 0 as well
as ∂kλc(kc; 0) = 0 yields

λκ̃β = i
∂kλd · ∂βλ+ ∂2

kd

∂λd

∣∣∣∣
k=kc,µ=0,λ=0

∈ R,

λMκ̃ = − λM∂kλd+ ∂2
kd

λM∂λd

∣∣∣∣
k=kc,µ=0,λ=0

∈ R,

ρκ̃ = − ∂2
kd

2∂λd

∣∣∣∣
k=kc,λ=0

< 0

with the last sign due to d1a4 + d2a1 > 0, a1 + a4 < 0 and

ρκ̃ = −d1a4 + d2a1 − 6d1d2k
2
c

a1 + a4 − (d1 + d2)k2
c

=
2(d1a4 + d2a1)

a1 + a4 − (d1 + d2)k2
c

.

Vanishing real part Re(λµ) = 0 thus occurs to leading order on a hyperbolic
paraboloid

α = B(κ̃, β) = −(ρκ̃κ̃
2 + ρββ

2)

in µ-space. Since the eigenvalue is stable (unstable) for α < B(κ̃, β) (α > B(κ̃, β)),
this constitutes the bifurcation surface at leading order.

The next theorem specifies the bifurcation and expansion of the stripe solutions
near µ = 0, where our main point is the effect of β and its interaction with α, κ̃. Rather
than expanding with abstract coefficients, we provide explicit formulae evaluated at
µ = 0 in terms of the following quantities.

(3.2)

Q0 := −2L−1Q[E0, E0], Q2 := −2(−4k2
cD + L)−1Q[E0, E0],

q0 := 〈Q[E0, Q0], E∗0 〉, q2 := 〈Q[E0, Q2], E∗0 〉,
k0 := 〈K[E0, E0, E0], E∗0 〉, ρnl := 3k0 + 2q0 + q2,

wAα̌ := (−k2
cD + L)−1(〈ME0, E

∗
0 〉 −M)E0,

wAβ := kc(−k2
cD + L)−1(〈BE0, E

∗
0 〉 −B)E0,

wAκ̃ := 2kc(−k2
cD + L)−1DE0,

wAββ := 2kc(−k2
cD + L)−1(BwAβ − 〈BwAβ , E∗0 〉E0),

eµ(x) := (E0 + α̌wAα̌ + iβwAβ + κ̃wAκ̃ + β2wAββ)eix.



8 J. YANG, J. D. M. RADEMACHER, E. SIERO

We note that the evaluation at µ = 0 in the following theorem gives the velocity
parameter c = −λβ and at this value of c we have 〈BE0, E

∗
0 〉 = 0.

Theorem 3.1 (Stripe existence). Up to spatial translation, non-trivial stripe
solutions to (1.1) with parameters µ, and sufficiently small |µ|, A with ‖Us(·;µ)‖L2 =
O(A) on [0, 2π/κ], are in 1-to-1 correspondence with solutions A > 0 to

(3.3) Re(λ̃(µ)) + ρnlA
2 +O

(
A3
)

= 0,

where λ̃(µ) = r(µ)λµ, cf. (3.1), and r is smooth with r(0) = 1. Stripes have velocity
βc with

c = −λβ −
λMβ

kc
aMα−

λκ̃β − λβ
kc

κ̃+O(aM |ακ̃|+ κ̃2 + |A|3)(3.4)

and, in this comoving frame, are of the form

Us(x;µ) = A(eµ(x) + eµ(x)) +
A2

2
Q2

(
e2ix + e−2ix

)
+A2Q0 +R,(3.5)

with the smooth remainder R = O(|A|(A2 + aMα
2 + κ̃2 + |βκ̃| + |β|3)) near µ = 0.

Moreover, the coefficients in the expansion of λ̃ analogous to (3.1) satisfy

(3.6)

λM = 〈ME0, E
∗
0 〉, λMβ = 〈MwAβ + kcBwAα̌, E

∗
0 〉/λM ,

λMκ̃ = 〈MwAκ̃ − 2kcDwAα̌, E
∗
0 〉/λM ,

ρβ = −kc〈BwAβ , E∗0 〉, ρκ̃ = −2kc〈DwAκ̃, E∗0 〉,
γβ = kc〈BE0, E

∗
0 〉, γκ̃β = kc〈BwAκ̃ − 2DwAβ , E

∗
0 〉+ 〈BE0, E

∗
0 〉.

We defer the proof to Appendix A. In case M = Id clearly α uniformly shifts
spectra so that α does not impact higher orders in λµ as can be seen from the fact
that λM = 1 and wAα̌ = λMβ = λMκ̃ = 0 in this case.

In its simplest case, the theorem reflects the well-known fact that, up to trans-
lation symmetry, for ρnl 6= 0 the bifurcation is a generic pitchfork. Specifically, with
respect to α the bifurcation is supercritical if ρnl < 0, which we shall assume in the
following stability study.

Our main interest lies in the role of β and Q. As noted in the discussion of the
eigenvalues above, β shifts the bifurcation points by order β2. From (3.3) we readily
solve for the stripe amplitude as

A =

(
1 +O

(√
Re(λ̃(µ))

))√
−Re(λ̃(µ))

ρnl
.(3.7)

Notably, the bifurcation loci, where A = 0, occur on a surface in µ-space that
includes µ = 0 since the signs of ρβ and ρκ̃ are opposite. The leading order part

α+ ρββ
2 + ρκ̃κ̃

2 of Re(λ̃(µ)) coincides with that of Re(λµ) and is homogeneous with
respect to the scalings α = A2α′, β = Aβ′, κ̃ = Aκ̃′, for which A = 0 occurs at
µ′ = (α′, β′, κ̃′) = 0 only. In these scaled parameters with µ′ = O(1) the order
analysis of remainders drastically simplifies to R = O(A3). In particular, the scaling
to µ′ gives

A = A

√
−α
′ + ρββ′2 + ρκ̃κ̃′2

ρnl
+O(A2).(3.8)
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Remark 3.2. The sign of c = c(µ) is the direction of stripe motion relative to β,
and is determined by λβ as sgn(c) = −sgn(λβ). In terms of a1, a4 we have

sgn(c) = −sgn(a1)

so the motion is with β if the first component is an inhibitor and against β otherwise.

Proof. Recall the notation of Lemma 2.2 and Lemma 2.4, which gives λβ = b4
b1+b4

,
and we have b1b4 = b2b3 < 0 and b1 + b4 < 0. For case (1) we note a1 < 0 implies
b1 < 0, which implies b4 > 0 and thus the claim. For case(2) similarly from a4 < 0,
we have b4 < 0 which leads to b1 > 0. Hence λβ = b1+b4−b1

b1+b4
= 1− b1

b1+b4
> 1 implies

c < −1.

4. Large wavelength stability. Linearising (A.1) in a stripe solution gives the
operator and eigenvalue problem for a perturbation U ,

LµU + 2Q[Us, U ] + 3K[Us, Us, U ] = λU,(4.1)

e.g. in the function space setting noted in Appendix A. It is convenient to write the
stripes in real terms,

Us(x;µ) = 2A(E0 + κ̃wAκ̃ + α̌wAα̌ + β2wAββ) cos(x)− 2AβwAβ sin(x)

+A2Q2 cos(2x) +A2Q0 +R.

As we now view stripes Us(x) in two space dimensions x = (x, y) ∈ R2 we may
Fourier-transform (4.1) with respect to y thus replacing ∂2

y by −`2. In x we perform
a Floquet-Bloch-transform, i.e., in Lµ = Lµ(∂x) replace ∂x by ∂x + iγ and impose
periodic boundary conditions on [0, 2π], e.g., [13]. From (4.1) this gives the operator

T := κ2D((∂x + iγ)2 − `2) + L+ α̌M + βκB(∂x + iγ) + 2Q[Us, ·] + 3K[Us, Us, ·],

which, as usual, arises for the perturbation in the form

U(x) = ei(γx+`y)V (x; γ),

where V (x; γ) has periodicity of Us(x) in x and we write V0(x) := V (x; 0) ∈ R2.

Here we are interesting in the stability of stripes against large wavelength pertur-
bations, i.e., γ, ` ≈ 0. Let us consider the eigenvalue problem T V = λV with respect
to a parameter p ∈ {`, γ} and denote evaluations at p = 0 by subindex zero. The
curve of eigenvalues attached to the translation mode at the origin thus has λ|0 = 0,
which is a simple zero eigenvalue with eigenvector V0. The kernel of T0 is therefore
spanned by

∂xUs = − 2A(E0 + κ̃wAκ̃ + α̌wAα̌ + β2wAββ) sin(x)− 2AβwAβ cos(x)

− 2A2Q2 sin(2x) +O(R).

Differentiating T V = λV with respect to p and evaluating at p = 0 gives

T0(∂pV )0 = (∂pλ)0V0 − (∂pT )0V0.(4.2)

By Fredholm alternative, this is solvable in (∂pV )0 if and only if the right-hand side
is orthogonal to the kernel of adjoint operator of T0 and thus

(∂pλ)0 = 〈(∂pT )0V0, V
∗
0 〉(4.3)
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with the normalisation 〈V0, V
∗
0 〉 = 1 and V ∗0 in the kernel of the adjoint operator

T ∗0 := κ2D∂2
x + LT + α̌MT − βκB∂x + (2Q[Us, ·] + 3K[Us, Us, ·])T .

In case p = ` we have (∂`T )0 = 0 and it follows that (∂`λ)0 = 0. In case p = γ,

(∂γT )0 = 2iκ2D∂x + iβκB,(4.4)

and it follows that

(∂γλ)0 = iκ〈(2κD∂x + βB)V0, V
∗
0 〉 ∈ iR,(4.5)

which measures the correction of the phase velocity c to the group velocity, cf. [5] and
Remark B.1 in Appendix B.2. It is well known to vanish for stationary wavetrains
c = 0 due to reflection symmetry in x of V0 = ∂xUs and V ∗0 ; here this occurs for β = 0
so that (∂γλ)0 = O(|β|) as we shall confirm in Appendix B.2.

Differentiating again and evaluating at p = 0 gives

T0(∂2
pV )0 = (∂2

pλ)0V0 − (∂2
pT )0V0 + 2(∂pλ)0(∂pV )0 − 2(∂pT )0(∂pV )0.

Proceeding as above, in case p = ` we have

(∂2
`λ)0 = 〈(∂2

` T )0V0, V
∗
0 〉 = −2κ2〈DV0, V

∗
0 〉,(4.6)

and in case p = γ we have

(∂2
γλ)0 = 〈(∂2

γT )0V0 − 2(∂γλ)0(∂γV )0 + 2(∂γT )0(∂γV )0, V
∗
0 〉.(4.7)

These quantities give the curvatures of spectrum at the origin in ` and γ directions,
respectively. Other directional derivatives are not relevant since (∂`V )0 ∈ ker T0 and
thus (∂`γλ)0 = 0. Hence, the signs of (4.6), (4.7) determine the sideband stability or
instability of stripes, which is commonly referred to as Eckhaus un/stable for the x-
direction, i.e. with respect to γ and ` = 0, and as zigzag un/stable for the y-direction,
i.e., with respect to ` and γ = 0.

Zigzag instability. It is well-known that stripes become unstable against large
wavelength perturbations parallel to the stripes if the stripes are stretched, while
stripes are not as sensitive to compression. The canonical example is the Swift-
Hohenberg equation which has not advection or quadratic terms. The main point of
the next theorem is to exhibit the effect of advection through β and also the role of
quadratic terms in the system.

Theorem 4.1 (Zigzag instability). For µ such that the stripe solution (3.5) with
the amplitude A(µ) > 0 exists in (1.1), the curve of spectrum of T for γ = 0 and
|`| � 1 attached to the origin is given by

λzz(`) =
(
kcρκ̃κ̃+ ρα̌α+ ρβββ

2 +Rzz

)
`2,(4.8)

with ρκ̃ as in §3, and

(4.9)

ρα̌ := −aMk2
c(〈DE0, w

∗
Aα̌〉+ 〈DwAα̌, E∗0 〉)/λM − q22/ρnl,

ρββ := −k2
c(〈DE0, w

∗
Aββ〉+ 〈DwAββ , E∗0 〉 − 〈DwAβ , w∗Aβ〉)− q22ρβ/ρnl,

q22 := −k2
c〈DQ2, Q

∗
2〉, Rzz = O(aMα

2 + κ̃2 + aM |α|β2 + `2),

where aM = 0 if M = Id, aM = 1 otherwise.
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The proof is presented in Appendix B.1. The theorem in particular shows that λzz

depends to quadratic order on the advection parameter β. In particular, for ρα̌ 6= 0,
the theorem gives the zigzag stability boundary to leading order as

α = Z(κ̃, β) = −(kcρκ̃κ̃+ ρβββ
2)/ρα̌.(4.10)

Recall that A = 0 holds for a surface in µ-space that includes µ = 0. The natural
scalings discussed after (3.7) give the following reduced spectrum.

Corollary 4.2. Assume the conditions in Theorem 4.1 and the scalings α =
A2α′, β = Aβ′, κ̃ = Aκ̃′, then the curve of spectrum of T for γ = 0 and |`| � 1
attached to the origin is given by

λzz(`) = A (kcρκ̃κ̃
′ +O(|A|)) `2.

Here the zigzag stability boundary is given by κ̃ = 0 to leading order, independent
of the advection, cf. Fig. 4.1a & 4.1b (green lines).

(i) (ii) (iii)

(a) β = 0, ρα̌ 6= 0

(A) (B) (C)

(b) β 6= 0, ρα̌ = 0

(1)
(2)(3)(4)(5)

(c) β 6= 0, ρα̌ < 0

(1)
(2) (3)(4) (5)

(d) β 6= 0, ρα̌ > 0

Fig. 4.1. Sketches of the different leading order zigzag boundaries in the (κ̃, α)-plane. Stripes
exist in the white regions. Dashed curves: bifurcation curves; coloured solid lines: zigzag boundaries.
The zigzag unstable region lies to the left of each zigzag boundary. In (a): (i) ρα̌ < 0, (ii) ρα̌ = 0,
zigzag boundary is κ̃ = 0, (iii) ρα̌ > 0. In (b): (A) ρββ < 0, (B) ρββ = 0, zigzag boundary is
κ̃ = 0, (C) ρββ > 0. In (c) and (d): (1) Z(0, β) > 0 (ρββ/ρα̌ < 0), (2) Z(0, β) = 0 (ρββ = 0),
(3) B(0, β) < Z(0, β) < 0 (0 < ρββ/ρα̌ < ρβ), (4) Z(0, β) = B(0, β) (ρββ/ρα̌ = ρβ), (5) Z(0, β) <
B(0, β) (ρββ/ρα̌ > ρβ).

Relaxing these scalings assumptions yields a variety of zigzag stability boundaries
depending on the signs of ρα̌ and ρββ , cf. Fig. 4.1. Nonzero ρα̌ creates a sloping zigzag
boundary and nonzero ρββ shifts the zigzag boundary horizontally. As mentioned in
Fig. 1.1b, the attachment point of the zigzag boundary to the bifurcation loci can be
moved and rotated relative to κ̃ = 0. The bifurcation curve at κ̃ = 0 lies at

α = B(0, β) = −ρββ2,

and the zigzag boundary at κ̃ = 0 lies at

α = Z(0, β) = −ρββ
ρα̌

β2

for ρα̌ 6= 0. Hence we can compare B(0, β) and Z(0, β) and obtain the more accurate
positions of the zigzag boundaries near the bifurcation curve and close to κ̃ = 0, cf.
Fig. 4.1.

Notably, the term q22 related to the quadratic form Q appears in both ρα̌ and
ρββ . In particular, vanishing quadratic form Q = 0 gives q22 = 0.

Remark 4.3. For Q = 0 we have q22 = 0, and from Remark 2.5, as well as (3.2)
and (3.4) a tedious computation gives

ρββ =
k4

cb
2
3d1

b21(b1 + b4)4
b4(5b1 + b4).



12 J. YANG, J. D. M. RADEMACHER, E. SIERO

Recall b1b4 = b2b3 < 0, b1 + b4 < 0 and a1 < 0 implies b1 < 0. Hence, for all
sufficiently small coefficients in Q, we have ρββ < 0 for either a1 < 0, or a1 > 0 and
a1 > k2

cd1 − (a4 − k2
cd2)/5, ρββ > 0 otherwise.

From Theorem 3.1 we know that the bifurcation curve for κ̃ = 0 in the (β, α)-
plane is to leading order given by α = −ρββ2. In order to study the stability at the
onset of bifurcation, let us consider α̃ := α+ ρββ

2 so the bifurcations occur at α̃ = 0
in the (β, α̃)-plane. It follows that

λzz(`) =
(
kcρκ̃κ̃+ ρα̌(α̃− ρββ2) + ρβββ

2 +Rzz

)
`2

=
(
kcρκ̃κ̃+ ρα̌α̃+ (ρββ − ρα̌ρβ)β2 +Rzz

)
`2,(4.11)

and thus the zigzag boundary for ρα̌ 6= 0 is given by

α̃ = −(kcρκ̃κ̃+ (ρββ − ρα̌ρβ)β2)/ρα̌.(4.12)

This dependence on β shows that the advection influences the form of the zigzag
stability boundary near the bifurcation.

Eckhaus instability. It is well known that a supercritical Turing bifurcation for
β = κ̃ = 0 implies stable Eckhaus sideband, and we next determine the expansion
including β, κ̃. Recall the Eckhaus instability arises from perturbations that vary only
in x-direction, i.e., p = γ and ` = 0.

Theorem 4.4 (Eckhaus instability). For µ such that the stripe solution (3.5)
with amplitude A(µ) > 0 exists in (1.1), the curve of spectrum of T for ` = 0 and
|γ| � 1 attached to the origin is given by

λeh = ikc

(
(λκ̃β − λβ)β +O(A2)

)
γ − k2

c

ρκ̃
ρnl

A−2
(
α+ ρββ

2 + 3ρκ̃κ̃
2 +Reh)

)
γ2,

with Reh := O(µ2 +A2|µ|+A4 + |γ|).
See Appendix B.2 for the proof and revisit Fig. 1.1 for the (un)stable regions.

Here we have simplified the estimate of Reh – more details can be found in the proof.
Hence, the Eckhaus stability boundary is given to leading order by

α = E(κ̃, β) = −3ρκ̃κ̃
2 − ρββ2.(4.13)

We note that for κ̃ = 0 this is E(0, β) = −ρββ2 = B(0, β). Moreover, since ρκ̃ < 0, we
have E(κ̃, β) ≥ B(κ̃, β) so that, as usual, the Eckhaus boundary touches the bifurcation
curve at κ̃ = 0 and lies in the existence region of stripes. Therefore, for κ̃ = 0 the
bifurcating stripes are Eckhaus stable and unstable otherwise.

Analogous to the zigzag stability, we consider α̃ := α+ ρββ
2 so that

Re(λeh) = −k2
c

ρκ̃
ρnl

A−2
(
α̃+ 3ρκ̃κ̃

2 +Reh)
)
γ2,(4.14)

and the Eckhaus boundary becomes

α̃ = −3ρκ̃κ̃
2,(4.15)

which is independent on β to leading order – in contrast to the zigzag boundary.
Hence, the leading order effect of advection through β is just a translation of the
Eckhaus boundary downwards (ρβ > 0) with order β2. In other words, for any fixed
α in the existence region, the width of Eckhaus stable region increases with |β|. The
advection can well influence the Eckhaus stability at higher order, cf. (B.10), but an
analysis of this is beyond the scope of this paper.
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5. Examples.

5.1. Exact example: zigzag-unstable stripes. For illustration of the expan-
sions we consider the concrete system

(5.1)
ut = ∆u+ 3u− v + α̌u+ 4α̌v + βux +

1

2
u2 +

1

8
v2 − uv2

vt =
7

2
∆v + 14u− 7

2
v − 1

5
α̌u+ α̌v +

1

2
u2 +

1

8
v2 + uv2

where U := (u, v)T , D = diag(1, 7/2),

L =

(
3 −1
14 − 7

2

)
, M =

(
1 4
− 1

5 1

)
, Q[U,U ] =

1

2

(
u2 + 1

4v
2

u2 + 1
4v

2

)
, K[U,U, U ] =

(
−uv2

uv2

)
.

The generic form of Q is given by Q[U1, U2] = (Q|[U1, U2], Q||[U1, U2])T with

Q|[U1, U2] = Q||[U1, U2] = UT1

(
1
2 0
0 1

8

)
U2,

where Uj := (uj , vj)
T , j = 1, 2, 3.

In this system, the Turing conditions are fulfilled and the critical wavevectors
(k, `) ∈ Skc

with kc = 1. We have

L̂0 := −k2
cD + L =

(
2 −1
14 −7

)
.

From Remark 2.5 the rescaled kernel eigenvector of L̂0 and its adjoint kernel eigen-
vector are given by

E0 = − 1√
5

(1, 2)T , E∗0 =
1√
5

(−7, 1)T .

We examine the coefficients in (3.2), (3.6) and (4.9) so that they are nonzero. The
bifurcation curves, zigzag and Eckhaus boundaries are given by, cf. Fig. 5.2,

bifurcation curve: α = − 14

125
β2 +

14

5
κ̃2,(5.2)

Eckhaus boundary: α = − 14

125
β2 +

42

5
κ̃2,(5.3)

zigzag boundary: α = − 952

267125
(13β2 + 875κ̃).(5.4)

The striped solutions exist for α > − 14
125β

2 + 14
5 κ̃

2. In Fig. 5.1 we plot the leading
order form of a stripe based on (3.5) for α = 0.2, β = 0.7 and κ̃ = 0.1, which gives
the velocity parameter c = −7/5.

The advection term shifts the bifurcation curve and the Eckhaus boundary down-
wards since the coefficient of β2 are both negative in (5.2) and (5.3), cf. Fig. 5.2. Thus
the advection stabilises the large wavelength perturbations in the x-direction.

The negative coefficient of κ̃ in (5.4) adds a negative value to the slope of the
zigzag boundary, cf. Fig. 5.2. The negative coefficient of β2 shifts the zigzag bound-
ary to the left, cf. Fig. 5.2a & 5.2b. Hence the advection stabilises the large wavelength
perturbations in the y-direction for any α > 0. Since the coefficient of β2 in (5.4) is
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0 1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

0.6

x

U
s

Fig. 5.1. The leading order of the rescaled striped solution Us (u-component blue, v-component
red) in x ∈ [0, 2π] to the system (1.1) for α = 0.2, β = 0.7 and κ̃ = 0.1.

larger than that of (5.2), however, there exists a zigzag unstable region near the bifur-
cation curve and for κ̃ > 0, cf. Fig. 4.1c. We plot the resulting curves in Fig. 5.2b. In
particular, the width of this unstable region is of order β2. Hence the advection desta-
bilises the large wavelength perturbations in the y-direction at the onset of Turing
bifurcation. This can also be seen from the positive coefficient of β2 in (4.11).

-0.2 -0.1 0.0 0.1 0.2

-0.05

0.00

0.05

0.10

0.15

0.20

κ̃

α

(a) β = 0

-0.2 -0.1 0.0 0.1 0.2

-0.05

0.00

0.05

0.10

0.15

0.20

κ̃

α

(b) β = 0.7

Fig. 5.2. Numerical computations of the leading order Eckhaus and zigzag (in)stability regions
of the stripes for (5.1) in the (κ̃, α)-plane. Stripes exist in the complement of the blue regions. Blue
lines: bifurcation curves (5.2); green regions: Eckhaus unstable; green lines: Eckhaus boundaries
(5.3); orange regions: zigzag unstable; orange lines: zigzag boundaries (5.4); white regions: stable
stripes. (a) β = 0. (b) β = 0.7. In (a) the zigzag boundary is attached to the origin, whereas in
(b) the origin is stable, but advection shifts attachment point of the zigzag boundary to the right;
M 6= Id destabilises the stripes near κ̃ = 0.

5.2. Numerical example: extended Klausmeier model. The extended
Klausmeier in two space dimensions [8, 17] is a two-component model for studying
vegetation patterns on the earth’s surface in drylands. In scaled form it is given by:

(5.5)
ut = d∆u+ βux + a− u− uv2,

vt = ∆v −mv + uv2.

The isotropic spread of (surface) water u is modelled by d∆u, downhill flow by βux,
precipitation by a and evaporation by −u. The uptake of water by vegetation ±uv2

is quadratic in the vegetation to model enhanced water infiltration at locations with
vegetation. Vegetation dispersal is modelled by ∆v and mortality by −mv. We fix the
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parameters to customary values d = 500 and m = 0.45 and investigate how (small)
advection impacts the patterns by ‘brute force’ computing them and their stability
against large-wavelength instabilities with pde2path [18]. For this we choose β = 0 or
50 or 100, which are relatively small values [17]. The parameter a is chosen so that
the system is near Turing(-Hopf) instability.

A spatially homogeneous steady state is given by (u, v) = (a, 0) and for a ≥ 2m
there are two more:

u±(a) =
2m2

a±
√
a2 − 4m2

, v±(a) =
a±
√
a2 − 4m2

2m
.

From these two, only (u+, v+) is stable against spatially homogeneous perturbations,
and becomes Turing(-Hopf) unstable when a drops below a critical value.

In Fig. 5.3 the large-wavelength stability of stripes near onset is depicted. Con-
trary to the previous example, for increasing advection β the zigzag boundary shifts
to the left of the Turing(-Hopf) instability, so in this case the stripes with critical
wavenumber that emerge are zigzag-stable.

 0.4  0.41  0.42  0.43  0.44  0.45  0.46

κ

 2.83

 2.84

 2.85

 2.86

 2.87

 2.88

 2.89

a

(a) β = 0

 0.39  0.4  0.41  0.42  0.43  0.44  0.45

κ

 2.88

 2.89

 2.9

 2.91

 2.92

 2.93

 2.94

a

(b) β = 50

 0.38  0.39  0.4  0.41  0.42  0.43  0.44

κ

 3.02

 3.03

 3.04

 3.05

 3.06

 3.07

 3.08

a

(c) β = 100

Fig. 5.3. Eckhaus and zigzag (in)stability regions of the stripes for (5.5) in the (κ, a)-plane,
by numerically checking the spectrum on an equidistant grid with spacing between neighboring grid
points of a = 0.0001 and κ = 0.0001. Stripes exist in the complement of the blue region; green
regions: Eckhaus unstable; orange regions: zigzag unstable. (a) β = 0. (b) β = 50. (c) β = 100. In
(a) the zigzag boundary is attached to the Turing instability locus and visually vertical, whereas in
(b) and particularly (c) the zigzag boundary has shifted and tilted to the left.

In addition, we can transform (5.5) into the framework of (1.1). Since (u+, v+)
is a function of a, we consider u = u+ + ũ, v = v+ + ṽ such that the equilibrium is
shifted to (ũ, ṽ) = (0, 0). Removing the ‘tilde’ yields

(5.6)
ut = d∆u− (1 + v2

+)u− 2mv + βux − 2v+uv − u+v
2 − uv2,

vt = ∆v + v2
+u+mv + 2v+uv + u+v

2 + uv2,

where the linear matrix, quadratic and cubic forms are given by

L̃ =

(
−1− v2

+ −2m
v2

+ m

)
, Q[U,U ] =

(
−2v+uv − u+v

2

2v+uv + u+v
2

)
, K[U,U, U ] =

(
−uv2

uv2

)
,

with U := (u, v)T . In particular, the generic form of Q is given by Q[U1, U2] =
(Q|[U1, U2], Q||[U1, U2])T with

−Q|[U1, U2] = Q||[U1, U2] = UT1

(
0 v+

v+ u+

)
U2,
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where Uj = (uj , vj)
T , j = 1, 2. Since the Turing bifurcation occurs at a = aT [17],

expanding L̃ near a = aT yields

L̃ = L̃(a) = L̃(aT ) + ∂aL̃(aT )(a− aT ) +O((a− aT )2).

In terms of the notations in (1.1), we denote L := L̃(aT ), M := ∂aL̃(aT ) and α̌ :=
a− aT . The higher order term O(α̌2) is not relevant to the analysis in this paper, so
we omit it. Therefore, we transform (5.5) into the framework of (1.1), and the analysis
of (1.1) for ‘sufficiently small’ α̌, β can be applied to (5.5). We list the leading order
of the existence, zigzag and Eckhaus boundaries of the extended Klausmeier model
(5.5) for small µ as follows (α ≈ −0.137α̌).

bifurcation curve: α ≈ −2.81× 10−6β2 + 8.39κ̃2,

Eckhaus boundary: α ≈ −2.81× 10−6β2 + 2.80κ̃2,

zigzag boundary: α ≈ −2.38× 10−5β2 − 3.09κ̃.

The advection shifts the bifurcation curve and the Eckhaus boundary downwards, and
shifts the zigzag boundary to the left. Notably, the zigzag boundary has a negative
slope and it is true for β = 0 as well. This can be seen from Fig. 5.3a that the zigzag
boundary is not precisely vertical.

Appendix A. Proof of Theorem 3.1. Writing the nonlinear part as F (u) :=
Q[u, u] +K[u, u, u] we seek wave trains as steady states, i.e. solutions to

Φ(u, µ) := Lµu+ F (u) = 0(A.1)

with Φ : (H2
per)

2 × Λ → (L2)2 on the Sobolev- and Lebesgue-spaces (H2
per)

2 to (L2)2

with normalised inner product 〈u, v〉L2 = 1
2π

∫ 2π

0
uvdx. It is well-known that the

realisation Lµ : (H2
per)

2 → (L2)2 is a bounded Fredholm operator with index zero.
Therefore, all solutions to (A.1) which bifurcate from µ = 0 can be fully determined
by Lyapunov-Schmidt reduction.

By assumption, L0 has a two-dimensional kernel spanned by e0(x) = E0eix and
its complex conjugate, where E0 is the eigenvector in the kernel of L̂0 = −k2

cD + L.
Let L∗0 be the adjoint operator of L0 equipped with inner product 〈·, ·〉L2 , and thus L∗0
has a kernel spanned by e∗0(x) = E∗0eix and its complex conjugate. Having in mind
the scaled inner products, we choose the normalisation 〈e0, e

∗
0〉 = 1 and 〈e0, e0〉 = 1,

i.e., 〈E0, E
∗
0 〉 = 1 and 〈E0, E0〉 = 1 (cf. Remark 2.5).

By Fredholm properties there exists closed subspaces X ⊂ (H2
per)

2 and Y ⊂ (L2)2

such that

(H2
per)

2 = kerL0 ⊕X, (L2)2 = Y ⊕ rangeL0.

Hence for each u ∈ (H2
per)

2, there exists unique v ∈ kerL0 and w ∈ X such that
u = v + w. With the projection Ph : (L2)2 → rangeL0, equation (A.1) is equivalent
to the system

PhΦ(v + w, µ) = 0,(A.2)

(Id− Ph)Φ(v + w, µ) = 0.(A.3)

Differentiating (A.2) with respect to w at (0, 0) gives Ph∂uΦ(0, 0) = PhL0 = L0|X :
X → rangeL0 as a boundedly invertible operator. Hence, for given v (A.2) can be
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solved by the implicit function theorem in terms of a smooth functionW : kerL0×Λ→
Y with W (0, 0) = 0, ∂vW (0, 0) = 0 as

w = W (v, µ),(A.4)

satisfying PhΦ(v+W (v, µ), µ) = 0. Substituting (A.4) into (A.3) yields the bifurcation
equation

φ(v, µ) := (Id− Ph)Φ(v +W (v, µ), µ) = 0,

with φ : kerL0 ×Λ→ Y . Since rangeL0 ∩ kerL0 = {0} and we are in Hilbert spaces,
we can choose

X = rangeL0 ∩ (H2
per)

2, Y = kerL∗0 = (rangeL0)⊥,

where the adjoint L∗0 has a kernel spanned by e∗0(x) = E∗0eix and its complex conjugate.
Hence, it is natural to write the projection as Ph = Id− P with

Pu = 〈u, e∗0〉e0 + 〈u, e∗0〉e0,

which equally is a projection for the splitting u = v+w, when constrained to (H2
per)

2.
With some abuse, we use the same notation for inner products in L2 and C2 as it is
clear from the context what is meant. Note that 〈PΦ, e∗0〉 = 〈Φ, e∗0〉 since 〈PhΦ, e∗0〉 = 0
for solutions.

Writing v = Ae0 +Ae0 the bifurcation equation can be cast as

g(A,A, µ) := 〈φ(Ae0 +Ae0, µ), e∗0〉 = 0(A.5)

with g : C × C × Λ → R which we next expand in order to expand solutions. Using
(A.1) and PL0 = 0 gives

g(A,A, µ) = 〈(Lµ − L0)v, e∗0〉+ 〈(Lµ − L0)W, e∗0〉+ 〈F (v +W ), e∗0〉(A.6)

Let us first consider the last term that includes F . While E0, E∗0 are real, we show
the complex conjugate to highlight the origin of terms. It is a priori clear from the
construction that W = O(|v||µ|) = O(|A||µ|), cf. (A.10) for the details a posteriori.
For u = Ae0 +Ae0 +W we then readily compute

〈K[u, u, u], e∗0〉 = 3A|A|2k0 +O(|A|3(|µ|+A2)),(A.7)

where k0 = 〈K[E0, E0, E0], E∗0 〉, and we used that orthogonality of Fourier modes
removes even powers of v, i.e., even powers of A.

The more involved 〈Q[u, u], e∗0〉 analogously gives

2A〈Q[e0,W ], e∗0〉+ 2A〈Q[e0,W ], e∗0〉+O(A2(|µ|2 +A2)),(A.8)

which requires expanding W = W (A,A, µ) through (A.2), i.e., the fixed point equa-
tion PhLµW = G(W,A,A, µ) with

(A.9) G(W,A,A, µ) := −PhF (v +W )− Ph(Lµ − L0)v,

where v = Ae0 +Ae0 and

Lµ − L0 = (2kcκ̃+ κ̃2)D∂2
x + α̌M + β(kc + κ̃)B∂x.
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Using ∂vG(0) = ∂WG(0) this expansion gives ∂AW (0) = ∂AW (0) = 0 and, cf. (3.2),

∂AAW (0) = −2(−4k2
cD + L)−1Q[E0, E0] = Q2,

∂AAW (0) = −2L−1Q[E0, E0] = Q0,

L0∂Aα̌W (0) = −PhMe0,

L0∂AβW (0) = −kcPhB∂xe0 = −ikcPhBe0,

L0∂Aκ̃W (0) = −2kcPhD∂
2
xe0 = 2kcPhDe0,

L0∂AββW (0) = −2kcPhB∂x∂AβW (0),

so that, looking at the Fourier modes,

∂AβW (0) = iwAβeix, ∂Aκ̃W (0) = wAκ̃eix, ∂Aα̌W (0) = wAα̌eix, ∂AββW (0) = wAββeix.

Furthermore wAβ , wAκ̃ and wAα̌ satisfy, cf. (3.2),

(−k2
cD + L)wAα̌ = (〈ME0, E

∗
0 〉 −M)E0,

(−k2
cD + L)wAβ = kc(〈BE0, E

∗
0 〉 −B)E0,

(−k2
cD + L)wAκ̃ = 2kcDE0,

(−k2
cD + L)wAββ = 2kc(BwAβ − 〈BwAβ , E∗0 〉E0),

where we used 〈DE0, E
∗
0 〉 = 0, which follows from a direct computation with the

conditions in Remark 2.3. Note that for M = Id we have wAα̌ = 0 and in fact W is
independent of α̌.

Assembling terms, we obtain

(A.10)

W (A,A, µ) = iβwAβ(Aeix −Ae−ix)

+ (κ̃wAκ̃ + α̌wAα̌ + β2wAββ)(Aeix +Ae−ix)

+
1

2
Q2

(
A2e2ix +A

2
e−2ix

)
+AAQ0 +R,

where R = O(|A|(A2 + κ̃2 + |βκ̃|+ |β|3 +aM α̌
2)); recall aM = 0 if M = Id and aM = 1

otherwise. Notably, the terms of order |Aβκ̃| are not relevant to the large-wavelength
stability of stripes, so we put them in the remainder. By translation symmetry we
can shift x to x+ a, which gives A replaced by Aeia so that without loss of generality
A is real. This gives (3.5).

The bifurcation equation (A.5) gives (3.3) through its real part divided by A.
The velocity equation (3.4) stems from rearranging the imaginary part divided by
βA. The latter is natural since imaginary terms arise from odd powers of ∂x, which
come with odd power of β. In order to separate resolved parts, that will be leading
order for later purposes, and remainder terms in (3.3), (3.4), we substitute (A.10)
into (A.6), where the third summand is (A.7) plus (A.8). In (A.8) only Fourier modes
eirx of W with r = 0 or r = 2 are nonzero. The case r = 0 stems only from products

that have AjA
j
, j ≥ 2 as the order in A since j = 0, 1 are resolved terms; the case

r = 2 has Aj+2A
j
, j ≥ 1. Hence, terms in (A.8) that stem from R are order A4; from

(A.7) this is order A5. The second summand of (A.6) is nonzero for linear terms in A
only, which contribute to higher order terms in λ̃(µ) as discussed below. Hence, the
relevant remainder term from (A.6) is order A4.
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The remainder term in (3.3) and (3.4) has this order divided by A, i.e., O(A3).
This is also the order of the contribution of R to the remainder term in (3.4); here
we note that real parts turn imaginary in (A.6) only through application of βkcB∂x
thus gaining a power of β.

The part of (A.5) that is resolved in (3.3), (3.4) arises upon substituting the
resolved terms of (A.10) into (A.8), and further into (A.6); here (A.7) directly enters.
Noting cancellation due to the Fourier modes and dividing out the trivial solution
A = 0 we obtain

(A.11) ∂Ag(0;µ) + ρnlA
2,

and its complex conjugate. On the one hand, for F = 0 the bifurcation equation is
linear in A and determines when Lµ has a kernel, which means there is a smooth
function r(µ) such that

∂Ag(0;µ) = λ̃(µ) = r(µ)λµ,

with λµ the critical eigenvalue from (3.1) and r(0) 6= 0. Expanding r we thus have

λ̃(µ) = r(0)λµ +R3, O(R3) = O(|µ| |λµ|)

and we can determine the expansion of λ̃ from

∂Ag(0;µ) = 〈(Lµ − L0)(Id + ∂µ∂vWµ+O(|µ|2))e0, e
∗
0〉

= 〈(Lµ − L0)e0, e
∗
0〉+ 〈(Lµ − L0)∂µ∂vWµ+O(|µ|2))e0, e

∗
0〉.

In particular, ∂α̌λ̃(0) = 〈ME0, E
∗
0 〉 which equals λM by a direct computation so that

r(0) = 1. Moreover, the real part of (A.11) gives (3.3) and solving the imaginary
part divided by β for c gives (3.4) when including the remainder terms discussed
before. In particular, r(0) = 1 yields (3.6) by comparing the other coefficients, and
〈BE0, E

∗
0 〉|µ=0 = 0.

Appendix B.

B.1. Proof of Theorem 4.1. From (4.6) the critical spectrum is given by

λzz = −κ2〈DV0, V
∗
0 〉`2 +O(`4).

We may choose V0 = ∂xUs = O(|A|). Expanding T ∗0 V ∗0 = 0 analogous to the compu-
tation of Us gives

V0 = − 2A
(
(E0 + κ̃wAκ̃ + α̌wAα̌ + β2wAββ) sin(x) + βwAβ cos(x)

+AQ2 sin(2x) +O(R/|A|)
)
,

V ∗0 = −A∗
(
(E∗0 + κ̃w∗Aκ̃ + α̌w∗Aα̌ + β2w∗Aββ) sin(x)− βw∗Aβ cos(x)

+AQ∗2 sin(2x) +O(R/|A|)
)
,

where

w∗Aκ̃ = 2kc(−k2
cD + LT )−1DE∗0 ,

w∗Aβ = kc(−k2
cD + LT )−1(〈BE∗0 , E0〉 −B)E∗0 ,

w∗Aα̌ = (−k2
cD + LT )−1(〈MTE∗0 , E0〉 −MT )E∗0 ,

w∗Aββ = 2kc(−k2
cD + LT )−1(Bw∗Aβ − 〈Bw∗Aβ , E0〉E∗0 ),

Q∗2 = −2(−4k2
cD + LT )−1Q[E0, ·]TE∗0 .
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The normalised coefficient A∗ is such that 〈V0, V
∗
0 〉 = 1, which implies A∗ = O(|A|−1)

and AA∗ = 1 in the limit µ → 0 since 〈V0, V
∗
0 〉|µ=0 = AA∗|µ=0〈E0, E

∗
0 〉 = 1. By

straightforward calculation and using 〈DE0, E
∗
0 〉 = 0, we have

1

AA∗
〈DV0, V

∗
0 〉 = κ̃(〈DE0, w

∗
Aκ̃〉+ 〈DwAκ̃, E∗0 〉)

+ β2(〈DE0, w
∗
Aββ〉+ 〈DwAββ , E∗0 〉 − 〈DwAβ , w∗Aβ〉)

+ α̌(〈DE0, w
∗
Aα̌〉+ 〈DwAα̌, E∗0 〉)

+A2〈DQ2, Q
∗
2〉+O(R/|A|)

= − ρκ̃
kc
κ̃+ ρ̃βββ

2 + ρ̃α̌aMα+ q̃22A
2 +O(R/|A|),(B.1)

where 〈DwAκ̃, E∗0 〉 = 〈DE0, w
∗
Aκ̃〉 = −ρκ̃/(2kc). Upon substitution into λzz, expan-

sion of κ and using the leading order of (3.3) yields the claimed result.

B.2. Proof of Theorem 4.4. The critical spectrum is given by

λeh = (∂γλ)0γ +
1

2
(∂2
γλ)0γ

2 +O(|γ|3).

We first compute (∂γλ)0, i.e., the terms in (4.5) and (4.7). Differentiating

LµUs +Q[Us, Us] +K[Us, Us, Us] = 0

with respect to κ̃ and rearranging terms yields

T0∂κ̃Us = −2(2κD∂x + βB + βκ∂κ̃B)V0.(B.2)

Hence, we can solve for ∂κ̃Us if and only if

〈(2κD∂x + βB + βκ∂κ̃B)V0, V
∗
0 〉 = 0,

where ∂κ̃B = ∂κ̃c · Id = (λβ − λκ̃β)/kc · Id, cf. (3.4), so that from (4.5) we have

(∂γλ)0 = −iκ〈βκ∂κ̃BV0, V
∗
0 〉 = −iκ2β∂κ̃c = iκ2β

λκ̃β − λβ
kc

,(B.3)

and the leading order gives the imaginary part of the claimed spectrum.

Remark B.1. As in [5] (∂γλ)0 measures the correction of the phase velocity c to
the group velocity cg. Let ω(κ) denote the nonlinear dispersion relation so that

c =
ω(κ)

κ
, cg =

dω(κ)

dκ
.

Differentiating c with respect to κ̃ gives

∂κ̃c =
1

κ

dω(κ)

dκ
− ω(κ)

κ2
=
cg − c
κ

,

and substituting into (B.3), yields

(∂γλ)0 = iκβ(c− cg).

Hence, for β 6= 0, 0 ≤ |κ̃| � 1, we have (∂γλ)0 = 0⇔ c = cg.
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Next, we consider (∂γV )0. Due to (4.2), (4.4) and (B.2) we have

T0(∂γV )0 = (∂γλ)0V0 − (∂γT )0V0 = (−iκ2β∂κ̃c− 2iκ2D∂x − iκβB)V0

= iκT0∂κ̃Us = T0(iκ∂κ̃Us),

which implies that (∂γV )0− iκ∂κ̃Us lies in the kernel of T0, spanned by V0, and there
is a ∈ C such that (∂γV )0 = iκ∂κ̃Us + aV0.

This term is not relevant for (∂2
γλ)0 since we compute

(∂2
γλ)0 = 〈(∂2

γT )0V0, V
∗
0 〉 − 2〈((∂γλ)0 − (∂γT )0)(∂γV )0, V

∗
0 〉

= − 2κ2〈DV0, V
∗
0 〉 − 2〈((∂γλ)0 − (∂γT )0)(iκ∂κ̃Us + aV0), V ∗0 〉

= − 2κ2〈DV0, V
∗
0 〉 − 2〈((∂γλ)0 − (∂γT )0)(iκ∂κ̃Us), V

∗
0 〉

using (4.3) in the third equality. Upon substituting (B.3) and (4.4) we obtain

(∂2
γλ)0 = − 2κ2〈2κD∂x∂κ̃Us, V

∗
0 〉(B.4)

− 2κ2〈DV0, V
∗
0 〉+ 2β

κ3

kc
(λκ̃β − λβ)〈∂κ̃Us, V

∗
0 〉 − 2κ2β〈B∂κ̃Us, V

∗
0 〉,(B.5)

and we will show that (B.4) is leading order. By (B.1) the first term in (B.5) is order
O(|aMα|+ |κ̃|+ β2 +A2), and we show the others are O(A−2β2(|κ̃|+ |aMα|) + β2).

Differentiating Us with respect to κ̃ gives

∂κ̃Us = ∂κ̃A
(
2(E0 + κ̃wAκ̃ + α̌wAα̌ + β2wAββ) cos(x)− 2βwAβ sin(x)

)
+ 2AwAκ̃ cos(x) + 2A∂κ̃AQ2 cos(2x) + 2A∂κ̃AQ0 + ∂κ̃R,

with ∂κ̃R = O(|A|(|β|+ |κ̃|)+ |∂κ̃A|R/|A|) by differentiating the smooth remainder in
(3.5). In the following we frequently omit remainder terms such as R as the order of
the remainder terms do not change and we are only interested in the resolved terms,
which will be higher order in the application of the result. From Theorem 3.1,

Aκ̃ := ∂κ̃A = −2ρκ̃κ̃+ λMκ̃aMα

2ρnlA
= O(|A|−1(|κ̃|+ |aMα|)),(B.6)

which means

〈∂κ̃Us, V
∗
0 〉 = Aκ̃A

∗β(〈wAβ , E∗0 〉+ 〈E0, w
∗
Aβ〉) +AA∗β〈wAκ̃, w∗Aβ〉

〈B∂κ̃Us, V
∗
0 〉 = Aκ̃A

∗β(〈BwAβ , E∗0 〉+ 〈BE0, w
∗
Aβ〉) +AA∗β〈BwAκ̃, w∗Aβ〉,

so that (B.5) is of order O((1 +A−2β2)(|κ̃|+ |aMα|) + β2 +A2).
As to (B.4), differentiating ∂κ̃Us with respect to x gives (to leading order)

∂x∂κ̃Us = − 2Aκ̃
(
(E0 + κ̃wAκ̃ + α̌wAα̌ + β2wAββ) sin(x) + βwAβ cos(x)

)
− 2AwAκ̃ sin(x)− 4AAκ̃Q2 sin(2x),

thus we have

〈D∂x∂κ̃Us, V
∗
0 〉 = (Aκ̃A

∗κ̃+AA∗)〈DwAκ̃, E∗0 〉+Aκ̃A
∗κ̃〈DE0, w

∗
Aκ̃〉

+Aκ̃A
∗α̌(〈DwAα̌, E∗0 〉+ 〈DE0, w

∗
Aα̌〉)

+Aκ̃A
∗β2(〈DwAββ , E∗0 〉+ 〈DE0, w

∗
Aββ〉 − 〈DwAβ , w∗Aβ〉)

+ 2A2Aκ̃A
∗〈DQ2, Q

∗
2〉

= (2Aκ̃A
−1κ̃+ 1)〈DwAκ̃, E∗0 〉+Aκ̃A

−1(ρα̌aMα+ ρβββ
2)(B.7)

+ 2A2Aκ̃A
∗〈DQ2, Q

∗
2〉.
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Since A2Aκ̃A
∗ = O(|κ̃|+ |aMα|), it is a higher order term compared to 〈DwAκ̃, E∗0 〉 =

O(1). Substituting (B.6), (3.2) and (3.3), (B.7) becomes

〈D∂x∂κ̃Us, V
∗
0 〉 =

ρκ̃
2kcρnl

A−2
(
α+ ρββ

2 + 3ρκ̃κ̃
2
)

+O
(
A−2(|aMα|+ |κ̃|)(aMα+ β2) + |aMα|+ |κ̃|

)
Altogether, using κ = kc + κ̃ we have, omitting the refinement when M = Id,

(∂2
γλ)0 = − 4κ3〈D∂x(∂κ̃Us), V

∗
0 〉(B.8)

+O(A−2(|α|+ |κ̃|)(|α|+ β2) + |α|+ |κ̃|+ β2 +A2)

= − 2k2
c

ρκ̃
ρnl

A−2
(
α+ ρββ

2 + 3ρκ̃κ̃
2 +Reh

)
(B.9)

which is as claimed and has remainder term

Reh = O
(
|ακ̃|+ α2 + |α|β2 + |κ̃|β2 + |κ̃|3 +A2(|κ̃|+ |α|+ β2 +A2)

)
.(B.10)

Note that A2|κ̃| is higher order compared to α+ ρββ
2 + 3ρκ̃κ̃

2 due to (3.7), and |ακ̃|
is higher order since α behaves quadratically for any balanced order between α, β2, κ̃2

which makes |ακ̃| cubic order.
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